
SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 1 
 

  
OPERATING SYSTEMS 

 
 

By 
 

P. PRAVEEN 
Asst.Prof, CSE 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 2 
 

 
�� 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 3 
 

 
1 

 
 

SYSTEM SOFTWARE 
 

Unit Structure 
 

1.0 Objectives  
1.1 Introduction  
1.2 Operating System  

1.2.1 Definition of operating system  
1.2.2 Functions of Operating System  
1.2.3 Operating System as User Interface  

1.3 I/O System Management  
1.4 Assembler  
1.5 Compiler  
1.6 Loader  
1.7 History of Operating System  
1.8 Summary  
1.9 Model Question   

 
1.0 OBJECTIVES   

 
After going through this unit, you will be able to:  

Describe Basic Organization of Computer Systems  
Define Operating system, functions, history and Evolution 

Define assembler, linker, loader, compiler 
 
 

1.1 INTRODUCTION  
 
 

An operating system act as an intermediary between the user of a 
computer and computer hardware. The purpose of an operating system 
is to provide an environment in which a user can execute programs in a 
convenient and efficient manner. 

 
An operating system is a software that manages the computer 

hardware. The hardware must provide appropriate mechanisms to ensure 
the correct operation of the computer 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 4 
 

 
system and to prevent user programs from interfering with the proper 
operation of the system.  
1.2 OPERATING SYSTEM  

 
 

1.2.1 Definition of Operating System: 
 

An  Operating  system  is  a  program  that  controls  the 
execution of application programs and acts as an interface 

between the user of a computer and the computer hardware.  
A more common definition is that the operating system is the one 
program running at all times on the computer (usually called the 
kernel), with all else being applications programs.  
An Operating system is concerned with the allocation of 
resources and services, such as memory, processors, devices and 
information. The Operating System correspondingly includes 
programs to manage these resources, such as a traffic controller, 
a scheduler, memory management module, I/O programs, and a 
file system. 

 
1.2.2 Functions of Operating System  
Operating system performs three functions:  

 Convenience: An OS makes a computer more convenient to use.  
 Efficiency: An OS allows the computer system resources to be 

used in an efficient manner.  
 Ability to Evolve: An OS should be constructed in such a way 

as to permit the effective development, testing and introduction 
of new system functions without at the same time interfering 
with service. 

 
1.2.3 Operating System as User Interface 

 
Every general purpose computer consists of the hardware, 
operating system, system programs, application programs. The 
hardware consists of memory, CPU, ALU, I/O devices, 
peripheral device and storage device. System program consists of 
compilers, loaders, editors, OS etc. The application program 
consists of business program, database program.  
The fig. 1.1 shows the conceptual view of a computer system 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 5 
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1.1 Conceptual view of a computer system 
 
 

Every computer must have an operating system to run other 
programs. The operating system and coordinates the use of the 
hardware among the various system programs and application 
program for a various users. It simply provides an environment 
within which other programs can do useful work. 

 
The operating system is a set of special programs that run on a 
computer system that allow it to work properly. It performs basic 
tasks such as recognizing input from the keyboard, keeping track 
of files and directories on the disk, sending output to the display 
screen and controlling a peripheral devices. 

 
OS is designed to serve two basic purposes :  
 It controls the allocation and use of the computing system’s 

resources among the various user and tasks. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 6 
 

 
 

 It provides an interface between the computer hardware and the 
programmer that simplifies and makes feasible for coding, 
creation, debugging of application programs. 

 
The operating system must support the following tasks. The tasks 
are :  

 Provides the facilities to create, modification of program and 
data files using and editor.  

 Access to the compiler for translating the user program from 
high level language to machine language.  

 Provide a loader program to move the compiled program code 
to the computer’s memory for execution.  

 Provide routines that handle the details of I/O programming.   
 

1.3 I/O SYSTEM MANAGEMENT  
 

I/O System Management 
 

The module that keeps track of the status of devices is called the 
I/O traffic controller. Each I/O device has a device handler that 
resides in a separate process associated with that device. 

 
The I/O subsystem consists of  
 A memory management component that includes buffering, 

caching and spooling.  
 A general device driver interface.  

Drivers for specific hardware devices.  
 

1.4 ASSEMBLER  
 

Input to an assembler is an assembly language program. Output 
is an object program plus information that enables the loader to prepare 
the object program for execution. At one time, the computer 
programmer had at his disposal a basic machine that interpreted, through 
hardware, certain fundamental instructions. He would program this 
computer by writing a series of ones and zeros(machine language), place 
them into the memory of the machine.  

 
1.5 COMPILER   

 
The high level languages – examples are FORTRAN, COBOL, 

ALGOL and PL/I – are processed by compilers and 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 7 
 

 
 

interpreters. A compilers is a program that accepts a source program in a 
“high-level language” and produces a corresponding object program. An 
interpreter is a program that appears to execute a source program as if it 
was machine language. The same name (FORTRAN, COBOL etc) is 
often used to designate both a compiler and its associated language.  

 
1.6 LOADER   

 
A loader is a routine that loads an object program and prepares it 

for execution. There are various loading schemes: absolute, relocating 
and direct-linking. In general, the loader must load, relocate, and link 
the object program. Loader is a program that places programs into 
memory and prepares them for execution. In a simple loading scheme, 
the assembler outputs the machine language translation of a program on 
a secondary device and a loader is placed in core. The loader places into 
memory the machine language version of the user’s program and 
transfers control to it. Since the loader program is much smaller than the 
assembler, thos makes more core available to user’s program.  

 
1.7 HISTORY OF OPERATING SYSTEM   

 
Operating systems have been evolving through the years. 
Following table shows the history of OS. 

 
Generation Year Electronic Types of OS and 

   devices used devices 
First 1945 – 55 Vacuum tubes Plug boards 
Second 1955 – Transistors Batch system 

 1965    
Third 1965 – Integrated Circuit Multiprogramming 

 1980  (IC)  
Fourth Since  Large scale PC 

 1980  integration   
 

1.8 SUMMARY  
 
 

Operating Systems:  
An Operating system is concerned with the allocation of 

resources and services, such as memory, processors, devices and 
information. The Operating System correspondingly includes programs 
to manage these resources, such as a traffic controller, a 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 8 
 

 
scheduler, memory management module, I/O programs, and a file 
system. 

 
Assembler:  

Input to an assembler is an assembly language program. Output 
is an object program plus information that enables the loader to prepare 
the object program for execution. 

 
Loader:  

A loader is a routine that loads an object program and prepares it 
for execution. 

 
There are various loading schemes: absolute, relocating and 

direct-linking. In general, the loader must load, relocate, and link the 
object program 

 
Compilers:  
A compilers is a program that accepts a source program ” in a high-
level language” and produces a corresponding object program.  

 
1.9 MODEL QUESTION   

 
Q. 1 Define Operating System?  
Q. 2 Explain various function of operating system?  
Q. 3 Explain I/O system Management?  
Q. 4 Define & explain Assembler, Loader, Compiler? 

 
 
 
 
 

����� 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 9 
 

 
 

2 
 
 
 

FUNDAMENTAL OF OPERATING SYSTEM 
 

Unit Structure 
 

2.0 Objectives  
2.1 Introduction  
2.2 Operating System Services  
2.3 Operating System Components  
2.4 Batch System  
2.5 Time Sharing System  
2.6 Multiprogramming  
2.7 Spooling  
2.8 Properties of Operating System  
2.9 Summary  
2.10 Model Question   

 
2.0 OBJECTIVES   

 
After going through this unit, you will be able to:  

To describe the services an operating system provides to 
users, processes, and other systems  
Describe operating system services and its components. 
Define multitasking and multiprogramming. 

Describe timesharing, buffering & spooling.   
 

2.1 INTRODUCTION   
 

An operating system provides the environment within which 
programs are executed. Internally, operating systems vary greatly in 
their makeup, since they are organized along many different lines. The 
design of a new operating system is a major task. It is important that the 
goals of the system be well defined before the design begins. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 10 
 

 
We can view an operating system from several vantage points. 

One view focuses on the services that the system provides, another, on 
the interface that it makes available to users and programmers; a third, 
on its components and their interconnections.  

 
2.2 OPERATING SYSTEM SERVICES  

 
An operating system provides services to programs and to the 
users of those programs. It provided by one environment for the 
execution of programs. The services provided by one operating 
system is difficult than other operating system. Operating system 
makes the programming task easier. 

 
The common service provided by the operating system is listed 
below. 

 Program execution  
 I/O operation  
 File system manipulation  
 Communications  
 Error detection 

 
 Program execution: Operating system loads a program into 

memory and executes the program. The program must be able to 
end its execution, either normally or abnormally. 

 
 I/O Operation : I/O means any file or any specific I/O device. 

Program may require any I/O device while running. So operating 
system must provide the required I/O. 

 
 

 File system manipulation : Program needs to read a file or write 
a file. The operating system gives the permission to the program 
for operation on file. 

 
 Communication : Data transfer between two processes is 

required for some time. The both processes are on the one 
computer or on different computer but connected through 
computer network. Communication may be implemented by two 
methods:  
 Shared memory  
 Message passing. 

 
 Error detection : error may occur in CPU, in I/O devices or in 

the memory hardware. The operating system constantly needs to 
be aware of possible errors. It should take the appropriate action 
to ensure correct and consistent computing. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 11 
 

 
Operating system with multiple users provides following 
services. 

 Resource Allocation  
 Accounting  
 Protection 

 
A) Resource Allocation :  

If there are more than one user or jobs running at the same time, 
then resources must be allocated to each of them. Operating 
system manages different types of resources require special 
allocation code, i.e. main memory, CPU cycles and file storage. 

 
There are some resources which require only general request and 
release code. For allocating CPU, CPU scheduling algorithms are 
used for better utilization of CPU. CPU scheduling algorithms 
are used for better utilization of CPU. CPU scheduling routines 
consider the speed of the CPU, number of available registers and 
other required factors. 

 
 
 
 

B) Accounting :  
Logs of each user must be kept. It is also necessary to keep 
record of which user how much and what kinds of computer 
resources. This log is used for accounting purposes. 

 
The accounting data may be used for statistics or for the billing. 

It also used to improve system efficiency. 
 

C) Protection :  
Protection involves ensuring that all access to system resources is 
controlled. Security starts with each user having to authenticate 
to the system, usually by means of a password. External I/O 
devices must be also protected from invalid access attempts. 

 
In protection, all the access to the resources is controlled. In 
multiprocess environment, it is possible that, one process to 
interface with the other, or with the operating system, so 
protection is required.   

 
2.3 OPERATING SYSTEM COMPONENTS  

 
Modern operating systems share the goal of supporting the 
system components. The system components are : 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 12 
 

 
 Process Management  
 Main Memory Management  
 File Management  
 Secondary Storage Management  
 I/O System Management  
 Networking  
 Protection System  
 Command Interpreter System  

 
2.4 BATCH SYSTEM  

 
Some computer systems only did one thing at a time. They had a 
list of the computer system may be dedicated to a single program 
until its completion, or they may be dynamically reassigned 
among a collection of active programs in different stages of 
execution. 

 
Batch operating system is one where programs and data are 
collected together in a batch before processing starts. A job is 
predefined sequence of commands, programs and data that are 
combined in to a single unit called job. 

 
 

Fig. 2.1 shows the memory layout for a simple batch system. 
Memory management in batch system is very simple. Memory is 
usually divided into two areas : Operating system and user 
program area.   

 
Operating 

System Resident  
Portion 

 
User Program  

Area Transient  
Program 

 
 
 
 

Fig 2.1 Memory Layout for a Simple Batch System 
 

Scheduling is also simple in batch system. Jobs are processed in 
the order of submission i.e first come first served fashion. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 13 
 

 
When job completed execution, its memory is releases and the 
output for the job gets copied into an output spool for later 
printing. 

 
Batch system often provides simple forms of file management. 
Access to file is serial. Batch systems do not require any time 
critical device management. 

 
 

Batch systems are inconvenient for users because users can not 
interact with their jobs to fix problems. There may also be long 
turn around times. Example of this system id generating monthly 
bank statement. 

 
Advantages o Batch System  
Move much of the work of the operator to the computer.  

Increased performance since it was possible for job to start as 
soon as the previous job finished. 

 
Disadvantages of Batch System  

Turn around time can be large from user standpoint. 

Difficult to debug program. 
 

A job could enter an infinite loop. 
 

A job could corrupt the monitor, thus affecting pending jobs. 
 

Due to lack of protection scheme, one batch job can affect 

pending jobs. 
 
 

2.5 TIME SHARING SYSTEMS   
 

Multi-programmed batched systems provide an environment 
where the various system resources (for example, CPU, memory, 
peripheral devices) are utilized effectively. 

 
Time sharing, or multitasking, is a logical extension of 
multiprogramming. Multiple jobs are executed by the CPU 
switching between them, but the switches occur so frequently 
that the users may interact with each program while it is running. 

 
An interactive, or hands-on, computer system provides on-line 

communication between the user and the system. The 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 14 
 

 
user gives instructions to the operating system or to a program 
directly, and receives an immediate response. Usually, a 
keyboard is used to provide input, and a display screen (such as a 
cathode-ray tube (CRT) or monitor) is used to provide output.  
If users are to be able to access both data and code conveniently, 
an on-line file system must be available. A file is a collection of 
related information defined by its creator. Batch systems are 
appropriate for executing large jobs that need little interaction. 

 
Time-sharing systems were developed to provide interactive use 
of a computer system at a reasonable cost. A time-shared 
operating system uses CPU scheduling and multiprogramming to 
provide each user with a small portion of a time-shared 
computer. Each user has at least one separate program in 
memory. A program that is loaded into memory and is executing 
is commonly referred to as a process. When a process executes, it 
typically executes for only a short time before it either finishes or 
needs to perform I/O. I/O may be interactive; that is, output is to 
a display for the user and input is from a user keyboard. Since 
interactive I/O typically runs at people speeds, it may take a long 
time to completed. 

 
 
 

A time-shared operating system allows the many users to share 
the computer simultaneously. Since each action or command in a 
time-shared system tends to be short, only a little CPU time is 
needed for each user. As the system switches rapidly from one 
user to the next, each user is given the impression that she has 
her own computer, whereas actually one computer is being 
shared among many users. 

 
 
 

Time-sharing operating systems are even more complex than are 
multi-programmed operating systems. As in multiprogramming, 
several jobs must be kept simultaneously in memory, which 
requires some form of memory management and protection.  

 
2.6 MULTIPROGRAMMING  

 
When two or more programs are in memory at the same time,   

sharing   the   processor   is   referred   to   the multiprogramming   
operating   system.   Multiprogramming assumes  a  single  

processor  that  is  being  shared.  It 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 15 
 

 
increases CPU utilization by organizing jobs so that the CPU 
always has one to execute. 

 
Fig. 2.2 shows the memory layout for a multiprogramming 
system.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The operating system keeps several jobs in memory at a time. 
This set of jobs is a subset of the jobs kept in the job pool. 
The operating system picks and begins to execute one of the 
job in the memory. 

 
Multiprogrammed system provide an environment in which 
the various system resources are utilized effectively, but they 
do not provide for user interaction with the computer system. 

 
Jobs entering into the system are kept into the memory. 
Operating system picks the job and begins to execute one of 
the job in the memory. Having several programs in memory 
at the same time requires some form of memory management. 

 
Multiprogramming operating system monitors the state of all 
active programs and system resources. This ensures that the 
CPU is never idle unless there are no jobs. 

 
Advantages  

 High CPU utilization. 
 

 It appears that many programs are allotted CPU almost 
simultaneously. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 16 
 

 
Disadvantages  

 CPU scheduling is requires.  
 To accommodate many jobs in memory, memory management 

is required.  
 

2.7 SPOOLING  
 

Acronym for simultaneous peripheral operations on line. 
Spooling refers to putting jobs in a buffer, a special area in 
memory or on a disk where a device can access them when it is 
ready. 

 
Spooling is useful because device access data that different rates. 
The buffer provides a waiting station where data can rest while 
the slower device catches up. Fig 2.3 shows the spooling.  

 
DISK   

 
 
 
 
 

CARD 
PRINTE
R 

READER 
 
 

Fig 2.3 Spooling Process 
 
 

Computer can perform I/O in parallel with computation, it 
becomes possible to have the computer read a deck of cards to a 
tape, drum or disk and to write out to a tape printer while it was 
computing. This process is called spooling. 

 
 

The most common spooling application is print spooling. In print 
spooling, documents are loaded into a buffer and then the printer 
pulls them off the buffer at its own rate. 

 
Spooling is also used for processing data at remote sites. The 
CPU sends the data via communications path to a remote printer. 
Spooling overlaps the I/O of one job with the computation of 
other jobs. 

 
One difficulty with simple batch systems is that the computer 

still needs to read the decks of cards before it can begin to 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 17 
 

 
execute the job. This means that the CPU is idle during these 
relatively slow operations. 

 
Spooling batch systems were the first and are the simplest of the 
multiprogramming systems. 

 
Advantage of Spooling  

 The spooling operation uses a disk as a very large buffer. 
 

 Spooling is however capable of overlapping I/O operation for 
one job with processor operations for another job.  

 
2.8 ESSENTIAL PROPERTIES OF THE OPERATING 

SYSTEM  
 

 Batch : Jobs with similar needs are batched together and run through 
the computer as a group by an operator or automatic job sequencer. 
Performance is increased by attempting to keep CPU and I/O devices 
busy at all times through buffering , off line operation, spooling and 
multiprogramming. A Batch system is good for executing large jobs that 
need little interaction, it can be submitted and picked up latter. 

 
 Time sharing : Uses CPU s scheduling and multiprogramming to 
provide economical interactive use of a system. The CPU switches 
rapidly from one user to another i.e. the CPU is shared between a 
number of interactive users. Instead of having a job defined by spooled 
card images, each program reads its next control instructions from the 
terminal and output is normally printed immediately on the screen. 

 
 Interactive : User is on line with computer system and interacts with 
it via an interface. It is typically composed of many short transactions 
where the result of the next transaction may be unpredictable. Response 
time needs to be short since the user submits and waits for the result. 

 
 Real time system : Real time systems are usually dedicated, 
embedded systems. They typically read from and react to sensor data. 
The system must guarantee response to events within fixed periods of 
time to ensure correct performance. 

 
 Distributed : Distributes computation among several physical 
processors. The processors do not share memory or a clock. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 18 
 

 
Instead, each processor has its own local memory. They communicate 
with each other through various communication lines.  

 
2.9 SUMMARY  

 
An operating system provides services to programs and to the 

users of those programs. It provided by one environment for the 
execution of programs. The services provided by one operating system 
is difficult than other operating system. Operating system makes the 
programming task easier. 

 
Batch operating system is one where programs and data are 

collected together in a batch before processing starts. In batch operating 
system memory is usually divided into two areas : Operating system and 
user program area. 

 
Time sharing, or multitasking, is a logical extension of 

multiprogramming. Multiple jobs are executed by the CPU switching 
between them, but the switches occur so frequently that the users may 
interact with each program while it is running. 

 
When two or more programs are in memory at the same time, 

sharing the processor is referred to the multiprogramming operating 
system. 

 
Spooling is useful because device access data that different rates. 

The buffer provides a waiting station where data can rest while the 
slower device catches up.  

 
2.10 MODEL QUESTION   

 
Q. 1 Explain various operating system services? 

 
Q. 2 Define Spooling? Describe Spooling process? 

 
Q. 3 Differentiate Multitasking & Multiprogramming? 

 
 
 
 
 

����� 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 19 
 

 
3 

 
 

PROCESS MANAGEMENT 
 

Unit Structure  
3.0 Objectives  
3.1 Concept of Process  

3.1.1 Processes and Programs  
3.2 Process State  

3.2.1 Suspended Processes  
3.2.2 Process Control Block  

3.3 Process Management  
3.3.1 Scheduling Queues  
3.3.2 Schedulers  

3.4 Context Switching  
3.5 Operation on processes  
3.6 Co-operating Processes  
3.7 Summary  
3.8 Model Questions   

 
3.0 OBJECTIVES   

 
After going through this unit, you will be able to:  

To introduce the notion of a process – a program in execution, 
which forms the basis of all computation 

 
To  describe  the  various  features  of  processes,  including 
scheduling, creation and termination, and communication.  

 
3.1 CONCEPT OF PROCESS   

A process is sequential program in execution. A process defines 
the fundamental unit of computation for the computer. 
Components of process are : 

 
 Object Program 

 
 Data 

 
 Resources 

 
 Status of the process execution. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 20 
 

 
Object program i.e. code to be executed. Data is used for 
executing the program. While executing the program, it may 
require some resources. Last component is used for verifying the 
status of the process execution. A process can run to completion 
only when all requested resources have been allocated to the 
process. Two or more processes could be executing the same 
program, each using their own data and resources. 

 
3.1.1 Processes and Programs  

Process is a dynamic entity, that is a program in execution. A 
process is a sequence of information executions. Process exists in 
a limited span of time. Two or more processes could be 
executing the same program, each using their own data and 
resources. 

 
Program is a static entity made up of program statement. 
Program contains the instructions. A program exists at single 
place in space and continues to exist. A program does not 
perform the action by itself.   

 
3.2 PROCESS STATE  

 
When process executes, it changes state. Process state is defined 
as the current activity of the process. Fig. 3.1 shows the general 
form of the process state transition diagram. Process state 
contains five states. Each process is in one of the states. The 
states are listed below.  

 New  
 Ready  
 Running  
 Waiting  
 Terminated(exist) 

 
 New : A process that just been created. 

 
 Ready : Ready processes are waiting to have the processor 

allocated to them by the operating system so that they can run. 
 

 Running : The process that is currently being executed. A 
running process possesses all the resources needed for its 
execution, including the processor. 

 
 Waiting : A process that can not execute until some event occurs 

such as the completion of an I/O operation. The 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 21 
 

24 
 

running process may become suspended by invoking an I/O 
module. 

 
 Terminated : A process that has been released from the pool of 

executable processes by the operating system.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3.1 Diagram for Process State 
 

Whenever processes changes state, the operating system reacts 
by placing the process PCB in the list that corresponds to its new 
state. Only one process can be running on any processor at any 
instant and many processes may be ready and waiting state. 

 
3.2.1 Suspended Processes  
Characteristics of suspend process 

 Suspended process is not immediately available for execution. 

 The process may or may not be waiting on an event. 
 

 For preventing the execution, process is suspend by OS, parent 

process, process itself and an agent. 
 

 Process may not be removed from the suspended state until the 

agent orders the removal. 
 

Swapping  is  used  to  move  all  of  a  process  from  main 

memory to disk. When all the process by putting it in the 
 

suspended state and transferring it to disk. 
 

Reasons for process suspension  
 Swapping 
 Timing  
 Interactive user request  
 Parent process request 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 22 
 

 
Swapping: OS needs to release required main memory to bring in a 
process that is ready to execute. 

 
Timing: Process may be suspended while waiting for the next time 
interval.  
Interactive user request: Process may be suspended for debugging 
purpose by user. 

 
Parent process request: To modify the suspended process or to 
coordinate the activity of various descendants. 

 
3.2.2 Process Control Block (PCB)  

Each process contains the process control block (PCB). PCB is 
the data structure used by the operating system. Operating 
system groups all information that needs about particular 
process. Fig. 3.2 shows the process control block.  

 
Process  

Pointer State  
Process Number   
Program Counter   
CPU registers   
Memory Allocation   
Event Information   
List of open files   

 
 

Fig. 3.2 Process Control Block 
 

 Pointer : Pointer points to another process control block. Pointer 
is used for maintaining the scheduling list. 

 
 Process State : Process state may be new, ready, running, 

waiting and so on. 
 

 Program Counter : It indicates the address of the next 
instruction to be executed for this process. 

 
 Event information : For a process in the blocked state this field 

contains information concerning the event for which the process 
is waiting. 

 
 CPU register : It indicates general purpose register, stack 

pointers, index registers and accumulators etc. number of register 
and type of register totally depends upon the computer 
architecture. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 23 
 

 
 Memory Management Information : This information may 

include the value of base and limit register. This information is 
useful for deallocating the memory when the process terminates. 

 
 Accounting Information : This information includes the amount 

of CPU and real time used, time limits, job or process numbers, 
account numbers etc. 

 
Process control block also includes the information about CPU 
scheduling, I/O resource management, file management 
information, priority and so on. The PCB simply serves as the 
repository for any information that may vary from process to 
process. 

 
When a process is created, hardware registers and flags are set to 
the values provided by the loader or linker. Whenever that 
process is suspended, the contents of the processor register are 
usually saved on the stack and the pointer to the related stack 
frame is stored in the PCB. In this way, the hardware state can be 
restored when the process is scheduled to run again.  

 
3.3 PROCESS MANAGEMENT / PROCESS SCHEDULING   

Multiprogramming operating system allows more than one 
process to be loaded into the executable memory at a time and 
for the loaded process to share the CPU using time multiplexing. 

 
The scheduling mechanism is the part of the process manager 
that handles the removal of the running process from the CPU 
and the selection of another process on the basis of particular 
strategy. 

 
3.3.1 Scheduling Queues  

When the process enters into the system, they are put into a job 
queue. This queue consists of all processes in the system. The 
operating system also has other queues. 

 
Device queue is a queue for which a list of processes waiting for 
a particular I/O device. Each device has its own device queue. 
Fig. 3.3 shows the queuing diagram of process scheduling. In the 
fig 3.3, queue is represented by rectangular box. The circles 
represent the resources that serve the queues. The arrows indicate 
the flow of processes in the system. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 24 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.3 Queuing Diagram 
 

Queues are of two types : ready queue and set of device queues. A 
newly arrived process is put in the ready queue. Processes are 
waiting in ready queue for allocating the CPU. Once the CPU is 
assigned to the process, then process will execute. While executing 
the process, one of the several events could occur. 

 
 

 The process could issue an I/O request and then place 

in an I/O queue. 

 The process could create new sub process and waits 

for its termination. 

 The process could be removed forcibly from the CPU, 

as a result of interrupt and put back in the ready 

queue. 

 
3.3.1.1 Two State Process Model  
Process  may be in one of two states :  

 Running  
 Not Running 

 
When new process is created by OS, that process enters into the 
system in the running state. 

 
Processes that are not running are kept in queue, waiting 

their turn to execute. Each entry in the queue is  a  printer  
to  a  particular  process.  Queue  is 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 25 
 

 
implemented by using linked list. Use of dispatcher is as 
follows. When a process interrupted, that process is 
transferred in the waiting queue. If the process has 
completed or aborted, the process is discarded. In either 
case, the dispatcher then select a process from the queue 
to execute. 

 
3.3.2 Schedules  

Schedulers are of three types.  
 Long Term Scheduler  
 Short Term Scheduler  
 Medium Term Scheduler 

 
3.3.2.1 Long Term Scheduler  

It is also called job scheduler. Long term scheduler determines 
which programs are admitted to the system for processing. Job 
scheduler selects processes from the queue and loads them into 
memory for execution. Process loads into the memory for CPU 
scheduler. The primary objective of the job scheduler is to 
provide a balanced mix of jobs, such as I/O bound and processor 
bound. It also controls the degree of multiprogramming. If the 
degree of multiprogramming is stable, then the average rate of 
process creation must be equal to the average departure rate of 
processes leaving the system. 

 
On same systems, the long term scheduler may be absent or 
minimal. Time-sharing operating systems have no long term 
scheduler. When process changes the state from new to ready, 
then there is a long term scheduler. 

 
3.3.2.2 Short Term Scheduler  

It is also called CPU scheduler. Main objective is increasing 
system performance in accordance with the chosen set of criteria. 
It is the change of ready state to running state of the process. 
CPU scheduler selects from among the processes that are ready 
to execute and allocates the CPU to one of them. 

 
Short term scheduler also known as dispatcher, execute most 
frequently and makes the fine grained decision of which process 
to execute next. Short term scheduler is faster than long tern 
scheduler. 

 
3.3.2.3 Medium Term Scheduler  

Medium term scheduling is part of the swapping function. It 
removes  the  processes  from  the  memory.  It  reduces  the 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 26 
 

 
degree of multiprogramming. The medium term scheduler is in 
charge of handling the swapped out-processes. 

 
 

Medium term scheduler is shown in the Fig. 3.4   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3.4 Queueing diagram with medium term scheduler 
 

Running process may become suspended by making an I/O 
request. Suspended processes cannot make any progress towards 
completion. In this condition, to remove the process from memory and 
make space for other process. Suspended process is move to the 
secondary storage is called swapping, and the process is said to be 
swapped out or rolled out. Swapping may be necessary to improve the 
process mix. 

 
3.3.2.4 Comparison between Scheduler 

 
Sr. Long Term  Short Term  Medium Term  
No.          
1 It is job scheduler It is CPU It is swapping  

    Scheduler     
2 Speed is less than Speed is very fast Speed is in 

 short term    between both  
 scheduler        
3 It controls degree Less control over Reduce the degree 

 of   degree of of   
 multiprogramming multiprogramming multiprogramming. 
4 Absent or minimal Minimal   in time Time sharing 

 in time sharing sharing system. system  use 
 system.     medium  term 
       scheduler.    



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 27 
 

 
 

5 It select processes It select from Process can be 
 from pool and load among   the reintroduced into 
 them  into  memory processes that memory and its 
 for execution.  are ready  to execution can be 
    execute.    continued.   

6 Process state   is Process state is -   
 (New to Ready) (Ready   to    
    Running)       

7 Select a good Select a new -   
 process, mix of I/O process for a    
 bound and CPU CPU  quite    
 bound.   frequently.       

 
3.4 CONTEXT SWITCH  

 
When the scheduler switches the CPU from executing one 
process to executing another, the context switcher saves the 
content of all processor registers for the process being removed 
from the CPU in its process being removed from the CPU in its 
process descriptor. The context of a process is represented in the 
process control block of a process. Context switch time is pure 
overhead. Context switching can significantly affect 
performance, since modern computers have a lot of general and 
status registers to be saved. 

 
Content switch times are highly dependent on hardware support. 
Context switch requires ( n + m ) bXK time units to save the 
state of the processor with n general registers, assuming b store 
operations are required to save register and each store instruction 
requires K time units. Some hardware systems employ two or 
more sets of processor registers to reduce the amount of context 
switching time. 

 
When the process is switched the information stored is :  

 Program Counter 
 

 Scheduling Information 
 

 Base and limit register value 
 

 Currently used register 
 

 Changed State 
 

 I/O State 
 

 Accounting 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 28 
 

  
 

3.5 OPERATION ON PROCESSES  
 

Several operations are possible on the process. Process must be 
created and deleted dynamically. Operating system must provide 
the environment for the process operation. We discuss the two 
main operations on processes.  

 Create a process  
 Terminate a process 

 
3.5.1 Create Process  

Operating system creates a new process with the specified or 
default attributes and identifier. A process may create several 
new subprocesses. Syntax for creating new process is : 

 
CREATE ( processed, attributes ) 

 
Two names are used in the process they are parent process and 
child process. 

 
Parent process is a creating process. Child process is created by the 
parent process. Child process may create another subprocess. So it 
forms a tree of processes. When operating system issues a CREATE 
system call, it obtains a new process control block from the pool of 
free memory, fills the fields with provided and default parameters, 
and insert the PCB into the ready list. Thus it makes the specified 
process eligible to run the process. 

 
When a process is created, it requires some parameters. These 
are priority, level of privilege, requirement of memory, access 
right, memory protection information etc. Process will need 
certain resources, such as CPU time, memory, files and I/O 
devices to complete the operation. When process creates a 
subprocess, that subprocess may obtain its resources directly 
from the operating system. Otherwise it uses the resources of 
parent process.  
When a process creates a new process, two possibilities exist in 
terms of execution. 

 The parent continues to execute concurrently with its children.  
 The parent waits until some or all of its children have terminated.  
For address space, two possibilities occur:  
 The child process is a duplicate of the parent process.  
 The child process has a program loaded into it. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 29 
 

 
3.5.2 Terminate a Process  

DELETE system call is used for terminating a process. A process 
may delete itself or by another process. A process can cause the 
termination of another process via an appropriate system call. 
The operating system reacts by reclaiming all resources allocated 
to the specified process, closing files opened by or for the 
process. PCB is also removed from its place of residence in the 
list and is returned to the free pool. The DELETE service is 
normally invoked as a part of orderly program termination. 

 
Following are the resources for terminating the child process by 
parent process. 

 The task given to the child is no longer required.  
 Child has exceeded its usage of some of the resources that it has 

been allocated.  
 Operating system does not allow a child to continue if its parent 

terminates.  
 

3.6 CO-OPERATING PROCESSES  
 

Co-operating process is a process that can affect or be affected 
by the other processes while executing. If suppose any process is 
sharing data with other processes, then it is called co-operating 
process. Benefit of the co-operating processes are : 

 
 Sharing of information  
 Increases computation speed  
 Modularity  
 Convenience 

 
Co-operating processes share the information : Such as a file, 
memory etc. System must provide an environment to allow 
concurrent access to these types of resources. Computation speed 
will increase if the computer has multiple processing elements 
are connected together. System is constructed in a modular 
fashion. System function is divided into number of modules. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 30 
 

  
 
 
 

Process 1  
Printf(“abc”) 

 
 
 
 

Process 2  
Printf(“CBA

”) 
 
 
 
 
 
 
 
 
 
 

CBAabc  abCcBA  abcCBA 
     

 
 
 

Behavior of co-operating processes is nondeterministic i.e. it 
depends on relative execution sequence and cannot be predicted 
a priori. Co-operating processes are also Reproducible. For 
example, suppose one process writes “ABC”, another writes 
“CBA” can get different outputs, cannot tell what comes from 
which. Which process output first “C” in “ABCCBA”. The 
subtle state sharing that occurs here via the terminal. Not just 
anything can happen, though. For example, “AABBCC” cannot 
occur.  

 
 

3.7 SUMMARY  
 
 

A process is a program in execution. As a process executes, it 
changes state. The state of a process is defined by that process’s current 
activity. Each process may be in one of the following states: new, ready, 
running, waiting, or terminated. Each process is represented in the 
operating system by its own process control block (PCB). 

 
A process, when it is not executing, placed in some waiting 

queue. There are two major classes of queues in an operating system: 
I/O request queues and the ready queue. The ready queue contains all 
the processes that are ready to execute and are waiting for the CPU. 
Each process is represented by a PCB and the PCBs can be linked 
together to form a ready queue. Long-term(job) scheduling is the 
selection of processes that will be allowed to contend for the CPU. 
Normally, long-term scheduling is heavily influenced by resources-
allocation considerations, especially memory management. Short-
term(CPU) scheduling is the selection of one process from the ready 
queue. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 31 
 

 
Operating systems must provide a mechanism for parent 

processes to create new child processes. The parent may wait for its 
children to terminate before proceeding, or the parent and children may 
execute concurrently. There are several reasons for allowing concurrent 
execution: information sharing computation speedup, modularity, and 
convenience. 

 
The processes executing in the operating system may be either 

independent processes or cooperating processes. Cooperating processes 
require an inter-process communication mechanism to communicate 
with each other. Principally, communication is achieved through two 
schemes: shared memory and message passing. The shared-memory 
method requires communicating processes through the use of these 
shared variables. In a shared-memory system, the responsibility for 
providing communication rests with the application programmers: the 
operating system needs to provide only the shared memory. The 
responsibility for providing communication may rest with the operating 
system itself. These two schemes are not mutually exclusive and can be 
used simultaneously within a single operating system.  

 
3.8 MODEL QUESTION  

 
Q.1 Define process and programs? 

 
Q.2 Describe Process Control Block? 

 
Q.3 Explain Scheduling Queues?  
Q.4 Explain schedulers and its types? 

 
Q.5 Differentiate various types of scheduler? 

 
Q.6 Explain context switch? 

 
Q.7 Explain operation on processes? 

 
 
 
 
 
 
 

����� 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 32 
 

 
4 

 
 

THREAD MANAGEMENT 
 

Unit Structure 
 
 

4.0 Objectives  
4.1 Introduction Of Thread  
4.2 Types of Thread  

4.2.1 User Level Thread  
4.2.2 Kernel Level Thread  
4.2.3 Advantage of Thread  

4.3 Multithreading Models  
4.3.1 Many to Many Model  
4.3.2 Many to One Model  
4.3.3 One to One Model  

4.4 Difference between User Level and Kernel Level Thread  
4.5 Difference between Process and Thread  
4.6 Threading Issues  
4.7 Summary  
4.8 Model Question   

 
4.0 OBJECTIVES   

 
After going through this unit, you will be able to:  

To introduce Thread & its types, Multithreading Models and 
Threading issues.  

 
4.1 INTRODUCTION OF THREAD  

 
A thread is a flow of execution through the process code, with its 
own program counter, system registers and stack. Threads are a 
popular way to improve application performance through 
parallelism. A thread is sometimes called a light weight process. 

 
Threads  represent  a  software  approach  to  improving 

performance of operating system by reducing the over head 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 33 
 

 
thread is equivalent to a classical process. Each thread belongs to 
exactly one process and no thread can exist outside a process. 
Each thread represents a separate flow of control.  

Fig. 4.1shows the single and multithreaded process.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Threads have been successfully used in implementing network 
servers. They also provide a suitable foundation for parallel 
execution of applications on shared memory multiprocessors.  

 
4.2 TYPES OF THREAD   

 
Threads is implemented in two ways :  

 User Level  
 Kernel Level 

 
4.2.1 User Level Thread  

In a user thread, all of the work of thread management is done by 
the application and the kernel is not aware of the existence of 
threads. The thread library contains code for creating and 
destroying threads, for passing message and data between 
threads, for scheduling thread execution and for saving and 
restoring thread contexts. The application begins with a single 
thread and begins running in that thread. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 34 
 

 
Fig. 4.2 shows the user level thread.   

 
 

User Level  
Thread   

 
 
 
 

User 
Space Thread  

Library 
 
 

Kernel Space 
 

P 
 
 

User level threads are generally fast to create and manage. 
 

Advantage of user level thread over Kernel level thread :  
 Thread switching does not require Kernel mode privileges.  
 User level thread can run on any operating system.  
 Scheduling can be application specific.  
 User level threads are fast to create and manage. 

 
 

Disadvantages of user level thread :  
 In a typical operating system, most system calls are blocking. 

 
 Multithreaded application cannot take advantage of 

multiprocessing. 
 

4.2.2 Kernel Level Threads  
In Kernel level thread, thread management done by the Kernel. 
There is no thread management code in the application area. 
Kernel threads are supported directly by the operating system. 
Any application can be programmed to be multithreaded. All of 
the threads within an application are supported within a single 
process. The Kernel maintains context information for the 
process as a whole and for individuals threads within the process. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 35 
 

 
Scheduling by the Kernel is done on a thread basis. The Kernel 
performs thread creation, scheduling and management in Kernel 
space. Kernel threads are generally slower to create and manage 
than the user threads. 

 
Advantages of Kernel level thread:  

 Kernel can simultaneously schedule multiple threads from the 
same process on multiple process.  

 If one thread in a process is blocked, the Kernel can schedule 
another thread of the same process.  

 Kernel routines themselves can multithreaded. 
 

Disadvantages:  
 Kernel threads are generally slower to create and manage than 

the user threads.  
 Transfer of control from one thread to another within same 

process requires a mode switch to the Kernel. 
 

4.2.3 Advantages of Thread  
 Thread minimize context switching time.  
 Use of threads provides concurrency within a process.  
 Efficient communication.  
 Economy- It is more economical to create and context switch threads.  
 Utilization of multiprocessor architectures –  
The benefits of multithreading can be greatly increased in a 
multiprocessor architecture.  

 
4.3 MULTITHREADING MODELS   

 
Some operating system provide a combined user level thread and 
Kernel level thread facility. Solaris is a good example of this 
combined approach. In a combined system, multiple threads 
within the same application can run in parallel on multiple 
processors and a blocking system call need not block the entire 
process.  

Multithreading models are three types:  
 Many to many relationship.  
 Many to one relationship.  
 One to one relationship. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 36 
 

 
4.3.1 Many to Many Model  

In this model, many user level threads multiplexes to the Kernel 
thread of smaller or equal numbers. The number of Kernel 
threads may be specific to either a particular application or a 
particular machine. 

 
Fig. 4.3 shows the many to many model. In this model, 
developers can create as many user threads as necessary and the 
corresponding Kernel threads can run in parallels on a 
multiprocessor.  

User Level   
Thread   

 
 
 
 
 
 
 
 
 
 

Kernel  
Thread 

K 
K K 

 
 
 
 

4.3.2 Many to One Model  
Many to one model maps many user level threads to one Kernel 
level thread. Thread management is done in user space. When 
thread makes a blocking system call, the entire process will be 
blocks. Only one thread can access the Kernel at a time, so 
multiple threads are unable to run in parallel on multiprocessors. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 37 
 

 
 

Fig.4.4 shows the many to one model.  
 
 

User Level  
Thread   

 
 
 
 
 
 

Kernel   
Thread 

 
K 

 
If the user level thread libraries are implemented in the operating 
system, that system does not support Kernel threads use the 
many to one relationship modes. 

 
4.3.3 One to One Model  

There is one to one relationship of user level thread to the kernel 
level thread. Fig. 4.5 shows one to one relationship model. This 
model provides more concurrency than the many to one model. 

 
 
 

User Level   
Thread   

 
 
 
 
 

Kernel  
Thread 

 
K K K 

 
 

It also another thread to run when a thread makes a blocking 
system call. It support multiple thread to execute in parallel on 
microprocessors. Disadvantage of this model is that creating user 
thread requires the corresponding Kernel thread. OS/2, windows 
NT and windows 2000 use one to one relationship model. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 38 
 

  
 
 

4.4 DIFFERENCE BETWEEN USER LEVEL & KERNEL 
LEVEL THREAD  

 
Sr. User Level Threads  Kernel Level Thread  
No         
1 User level thread are faster to Kernel level thread are 

 create and manage.  slower to create and 
    manage.    
2 Implemented   by   a thread Operating   system support

 library at the user level.  directly to Kernel threads. 
3 User level thread can run on Kernel level threads are 

 any operating system.  specific to the operating
    system.     
4 Support provided at the user Support may be provided by 

 level called user level thread. kernel is called Kernel level 
    threads.    
5 Multithread application cannot Kernel routines  themselves 

 take advantage of can be multithreaded.  
 multiprocessing.        

 
4.5 DIFFERENCE BETWEEN PROCESS AND THREAD  

 
Sr. Process   Thread    
No        
1 Process  is  called  heavy  weight Thread is called light

 process.   weight process.  
2 Process switching needs Thread switching does

 interface with operating system. not   need   to   call   a 
    operating  system and
    cause an interrupt to the 
    Kernel.    
3 In multiple process All   threads can share

 implementation   each process same  set  of  open  files, 
 executes the same code but has child processes.  
 its   own   memory   and   file     
 resources.        
 If one server process is blocked no 

other server process can execute 
until the first process unblocked. 

 
While one server thread is 
blocked and waiting, 
second thread in the same 
task could run. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 39 
 

 
 
 

5 Multiple   redundant   process Multiple threaded process uses 
 uses more resources than fewer resources than  multiple 
 multiple threaded.  redundant process. 

6 In multiple process each One thread can read, write or 
 process operates even completely   wipe   out 
 independently of  the others. another threads stack.  

 
4.6 THREADING ISSUES  

 
System calls fork and exec is discussed here. In a multithreaded 
program environment, fork and exec system calls is changed. 
Unix system have two version of fork system calls. One call 
duplicates all threads and another that duplicates only the thread 
that invoke the fork system call. Whether to use one or two 
version of fork system call totally depends upon the application. 
Duplicating all threads is unnecessary, if exec is called 
immediately after fork system call. 

 
Thread cancellation is a process of thread terminates before its 
completion of task. For example, in multiple thread environment, 
thread concurrently searching through a database. If any one 
thread returns the result, the remaining thread might be 
cancelled. 

 
Thread cancellation is of two types.  
 Asynchronous cancellation  
 Synchronous cancellation 

 
In asynchronous cancellation, one thread immediately terminates 
the target thread. Deferred cancellation periodically check for 
terminate by target thread. It also allow the target thread to 
terminate itself in an orderly fashion. Some resources are 
allocated to the thread. If we cancel the thread, which update the 
data with other thread. This problem may face by asynchronous 
cancellation system wide resource are not free if threads 
cancelled asynchronously. Most of the operating system allow a 
process or thread to be cancelled asynchronously.  

 
4.7 SUMMARY  

 
A thread is a flow of control within a process. A multithreaded 

process contains several different flows of control 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 40 
 

 
 

within the same address space. The benefits of multithreading include 
increased responsiveness to the user, resource sharing within the 
process, economy, and scalability issues such as more efficient use of 
multiple core. 

 
User level threads are threads are visible to the programmer and 

are unknown to the kernel. The operating system kernel supports and 
manages kernel level threads. In general, user level threads are faster to 
create and manage than are kernel threads, as no intervention from the 
kernel is required. Three different types of models relate user and kernel 
threads: the many-to-one model maps many user threads to a single 
thread. The one to one model maps each user thread to a corresponding 
kernel thread. The many to many model multiplexers many user threads 
to a smaller or equal number of kernel threads.  

 
4.8 MODEL QUESTION   

 
Q. 1 Define thread and its types in detail? 

 
Q. 2 Differentiate user level thread and kernel level thread? 

 
Q. 3 Explain various Multithreaded Model? 

 
Q. 4 Differentiate process and thread? 

 
 

�  
�  

����� 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 41 
 

 
 

 
 
 

CONCURRENCY CONTROL 
 

Unit Structure 
 

5.0 Objectives  
5.1 Principal of Concurrency  
5.2 Race Condition  
5.3 Mutual Exclusion Requirements  
5.4 Mutual Exclusion Software Support  
5.5 Mutual Exclusion Hardware Support  
5.6 Semaphores  
5.7 Monitors  
5.8 Summary  
5.9 Model Question   

 
5.0 OBJECTIVES   

 
After going through this unit, you will be able to:  

To introduce the concurrency control and Race condition, critical 
section problem, where solutions can be used to ensure the 
consistency of shared data.  
To present both software and hardware solutions of the critical 
section problem.  

 
5.1 PRINCIPLE OF CONCURRENCY  

 
In a single-processor multiprogramming system, processes are 

interleaved in time to yield the appearance of simultaneous execution. 
Even parallel processing is not achieved, and ever though there is a 
certain amount of overhead involved in switching back and forth 
between processes, interleaved execution provides major benefits in 
processing efficiency and in program structuring. In a multiple processor 
system, it is possible not only to interleave the execution of multiple 
processes but also to overlap them. It is assumed, it may seem that 
interleaving and overlapping represent fundamentally different modes of 
execution and present different problems. In fact, both techniques can be 
viewed as examples of concurrent processing, and both present the same 
problems. The relative speed of execution of processes It depends on 
activities of 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 42 
 

 
 

other processes, the way in which the operating system handles 
interrupts, and the scheduling policies of the operating, system. 

 
There are quite difficulties:  
 The sharing of global resources. For example, if two processes both 
make use of the same global variable and both perform reads and writes 
on that variable, then the order in which the various reads and writes are 
executed is critical. 

 
 It is difficult for the operating system to manage the allocation of 
resources optimally. 

 
 It is very difficult to locate a programming error because results are 
typically not deterministic and reproducible. 

 
Eg:  
Void echo()  
{  
chin = getchar();  
chout = chin;  
putchar(chout);  
} 

 
This procedure shows the essential elements of a program that 

will provide a character echo procedure; input is obtained from a 
keyboard one keystroke at a time. Each input character is stored in 
variable chin. It is then transferred to variable chout and sent to the 
display. Any program can call this procedure repeatedly to accept user 
input and display it on the user's screen. 

 
In a single - processor multiprogramming system supporting a 

single user. The user can jump from one application to another, and each 
.application uses the same keyboard for input and the same screen for 
output. Because each application needs to use the procedure echo, it 
makes sense for it to be a shared procedure that is loaded into a portion 
of memory global to all applications. Thus, only a single copy of the 
echo procedure is used, saving space. 

 
The sharing of main memory among processes is useful to permit 

efficient and close interaction among processes Consider the following 
sequence: 

 
 Process P1 invokes the echo procedure and is interrupted 
immediately after getchar returns its value and stores it in chin. At 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 43 
 

 
 

this point, the most recently entered character, x, is stored in variable 
chin. 

 
 Process P2 is activated and invokes the echo procedure, which runs to 
conclusion, inputting and then displaying a single character, y, on the 
screen. 

 
 Process P1 is resumed. By this time, the value x has been overwritten 
in chin and therefore lost. Instead, chin contains y, which is transferred 
to chout and displayed. 

 
Thus, the first character is lost and the second character is 

displayed twice. Because of shared global variable, chin. If one process 
updates the global variable and then is interrupted, another  
.process may alter the variable before the first process can use its value. 
However, if only one process at a time may be in that procedure. Then 
the foregoing sequence would result in the following: 

 
 Process P1 invokes the echo procedure and is interrupted 
immediately after the conclusion of the input function. At this point, the 
most recently entered character, x, is stored in variable chin. 

 
 Process P2 is activated and invokes the echo procedure. However, 
because P1 is still inside the echo procedure, although currently 
suspended, P2 is blocked from entering the procedure. Therefore, P2 is 
suspended awaiting the availability of the echo procedure. 

 
 At some later time, process PI is resumed and completes execution 
of echo. The proper character, x, is displayed. 

 
 When PI exits' echo, this removes the block on P2. When P2 is later 
resumed, the echo procedure is successfully invoked. 

 
Therefore it is necessary to protect shared global variables. And 

that the only way to do that is to control the code that accesses the 
variable.  

 
5.2 RACE CONDITION   

 
A race condition occurs when multiple processes or threads read 

and write data items so that the final result depends on the order of 
execution of instructions in the multiple processes. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 44 
 

 
 

Suppose that two processes, P1 and P2, share the global variable 
a. At some point in its execution, P1 updates a to the value 1, and at 
some point in its execution, P2 updates a to the value 2. Thus, the two 
tasks are in a race to write variable a. In this example the "loser" of the 
race (the process that updates last) determines the final value of a. 

 
Therefore Operating System Concerns of following things:  
 The operating system must be able to keep track of the various 

processes  
 The operating system must allocate and deallocate various resources 

for each active process.  
 The operating system must protect the data and physical resources of 

each process against unintended interference by other processes.  
 The functioning of a process, and the output it produces, must be 

independent of the speed at which its execution is carried out relative 
to the speed of other concurrent processes. 

 
Process Interaction can be defined as  
 Processes unaware of each other  
 Processes indirectly aware of each other  
 Processes directly aware of each other 

 
Concurrent processes come into conflict with each other when 

they are competing for the use of the same resource. 
 

Two or more processes need to access a resource during the 
course of their execution. Each process is unaware of the existence of 
the other processes. There is no exchange of information between the 
competing processes.  

 
5.3 REQUIREMENTS FOR MUTUAL EXCLUSION  

 
 

 Mutual exclusion must be enforced: Only one process at a time is 
allowed into its critical section, among all processes that have critical 
sections for the same resource or shared object. 

 
 A process that halts in its non critical section must do so without 
interfering with other processes. 

 
 It must not be possible for a process requiring access to a critical 
section to be delayed indefinitely: no deadlock or starvation. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 45 
 

 
 

 When no process is in a critical section, any process that requests 
entry to its critical section must be permitted to enter without delay. 

 
 No assumptions are made about relative process speeds or number of 
processors. 

 
 A process remains inside its critical section for a finite time only.   

 
5.4 MUTUAL EXCLUSION – SOFTWARE SUPPORT   

 
Software approaches can be implemented for concurrent 

processes that executes on a single processor or a multiprocessor 
machine with shared main memory. 

 
5.4.1 Dekkers Algorithm:  

Dekkers algorithm is for two processes based solely on software. 
Each of these processes loop indefinitely, repeatedly entering and 
reentering its critical section. A process (P0 & P1) that wishes to 
execute its critical section first enters the igloo and examines the 
blackboard. The process number is written on the blackboard, 
that process leaves the igloo and proceeds to critical section. 
Otherwise that process will wait for its turn. Process reenters in 
the igloo to check the blackboard. It repeats this exercise until it 
is allowed to enter its critical section. This procedure is known as 
busy waiting.  
In formal terms, there is a shared global variable : Var turn : 0 : 
1; 

Process 0  
- - - -  
- - - -  
While turn # 0 do (nothing)  
<critical section>;  
turn := 1;  
- - - -  
Process 1  
- - - -  
- - - -  
While turn # 1 do (nothing);  
<critical section>;  
Turn := 0;  
- - - - 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 46 
 

 
 

The above solution satisfy the property of mutual exclusion. 
Drawback of the solution are as follows: 

 Processes must strictly alternate in their use of their critical 
section. 

 if one process fails, the other process is permanently 
blocked. 

Drawbacks of software solutions  
 Complicated to program.  
 busy waiting is possible.  
 it would be more efficient to block processes that are waiting.  
 makes difficult assumptions about the memory system.   

 
5.5 MUTUAL EXCLUSION – HARDWARE SUPPORT   

 
Hardware approaches to mutual exclusion. 

 
5.5.1 Interrupt Disabling:  

In a uniprocessor machine, concurrent processes cannot be 
overlapped; they can only be interleaved. Furthermore, a process will 
continue to run until it invokes an operating system service or until it is 
interrupted. Therefore, to guarantee mutual exclusion, it is sufficient to 
prevent a process from being interrupted. This capability can be 
provided in the form of primitives defined by the system kernel for 
disabling and enabling interrupts. 

 
eg:  
while (true)  
(  
disable interrupts()  
critical section  
enable interrupts()  

)  remainder 
 

Because the critical section cannot be interrupted, mutual exclusion is 
guaranteed. 
Disadvantages  

It works only in a single processor environment. 
Interrupts can be lost if not serviced promptly. 
A process waiting to enter its critical section could suffer 
from starvation. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 47 
 

 
 

5.5.2 Test and Set Instruction  
It is special machine instruction used to avoid mutual 
exclusion. The test and set instruction can be defined as 
follows:  
boolean testset (int i)  
{  

if (i==o)  
{  
i=1;  

return true;  
}  
else., .  
{  

return false;  
}  
The above function is carried out automatically. 

 
Advantages  

 It is simple and easy to verify.  
 it is applicable to any number of processes.  
 it can b used to support multiple critical section. 

 
Disadvantages  

 Busy waiting is possible.  
 Starvation is also possible.  
 There may be deadlock.   

 
5.6 SEMAPHORES  

 
 

The solutions of the critical section problem represented in the 
section is not easy to generalize to more complex problems. To 
overcome this difficulty, we can use a synchronization tool call a 
semaphore. A semaphore S is an integer variable that, a part from 
initialization, is a accessed two standard atomic operations: wait 
and signal. This operations were originally termed P (for 
wait;from the Dutch proberen, to test) and V (for signal ; from 
verhogen, to increment). 

 
The Classical definition of wait and signal are 
Wait (S) 
{ 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 48 
 

 
 

while (S <=0)  
S =S – 1;  
} 

 
signal(S)  
{  
S = S + 1;  
}  
The integer value of the semaphore in the wait and signal 
operations must be executed indivisibly. That is, when one 
process modifies the semaphore value, no other process can 
simultaneously modify that same semaphore value. 

 
In addition, in the case of the wait(S), the testing of  the integer 

value of S (S 0), and its possible modification (S := S  
– 1), must also be executed without interruption. 

 
Semaphores are not provided by hardware. But they have several 
attractive properties: 

 Semaphores are machine independent.  
 Semaphores are simple to implement.  
 Correctness is easy to determine.  
 Can have many different critical sections with different 

semaphores. 
 Semaphore acquire many resources simultaneously. 

 
Drawback of Semaphore  
 They are essentially shared global variables.  
 Access to semaphores can come from anywhere in a program.  
 There is no control or guarantee of proper usage.  
 There is no linguistic connection between the semaphore and the data 

to which the semaphore controls access. 
 They serve two purposes, mutual exclusion and scheduling 

constraints.  
 

5.7 MONITORS   
 

The  monitor  is  a  programming-language  construct  that 
provides equivalent functionality to that of semaphores and that 

is easier to control. The monitor construct has been implemented  



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 49 
 

in  a  number  of  programming  languages, including   
Concurrent   Pascal,   Pascal-Plus,   Modula-2, 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 50 
 

 
 

Modula-3, and Java. It has also been implemented as a program 
library. This allows programmers to put monitor locks on any 
object. 

 
Monitor with Signal  

A monitor is a software module consisting of one or more 
procedures, an initialization sequence, and local data The 
characteristics of a monitor are the following: 

 
 The local data variables are accessible only by the monitor's 

procedures and not by any external procedure.  
 A process enters the monitor by invoking one of its procedures.  
 Only one process may De executing in the monitor at a time; any 

other process that has invoked the monitor is blocked, waiting for the 
monitor to become available. 

 
A monitor supports synchronization by the use of condition 

variables that are contained Within the monitor and accessible only 
within the monitor. Condition variables are a special data type in 
monitors, which are operated on by two functions: 

 
 cwait (c): Suspend execution of the calling process on condition c. The 
monitor is now available for use by another process. 

 
 csignal (c): Resume execution of some process blocked after a cwait 
on the same condition)lf there are several such processes, choose one of 
them; if there is no such process, do nothing. 

 
Monitor wait and signal operations are different from those for 
the semaphore. If a process in a monitor signals and no task is 
waiting on the condition variable, the signal is lost.  
Although a process can enter the monitor by invoking any of its 
procedures, we can think of the monitor as having a single entry 
point that is guarded so that only one process may be in the 
monitor at a time. Other processes that attempt to enter the 
monitor join a queue of processes blocked waiting for monitor 
availability.  
Once a process is in the monitor, it may temporarily block itself 
on condition x by issuing cwait (x); it is then placed in a queue of 
processes waiting to reenter the monitor when the condition 
changes, and resume execution at the point in its program 
following the cwait (x) call. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 51 
 

 
 

If a process that is executing in the monitor detects a change in 
condition variable x, it issues csignal (x), which alerts the 
corresponding condition queue that the condition has changed.  
A producer can add characters to the buffer only by means of the 
procedure append inside the monitor; the producer does not have 
direct access to buffer.  
The procedure first-checks the condition not full to determine if 
there is space available in the buffer. If not, the process executing 
the monitor is blocked on that condition.   

 
5.8 SUMMARY   

 
Critical section is a code that only one process at a time can be 

executing. Critical section problem is design an algorithm that allows at 
most one process into the critical section at a time, without deadlock. 
Solution of the critical section problem must satisfy mutual exclusion, 
progress, bounded waiting. 

 
Semaphore is a synchronization variable that tasks on positive 

integer values. Binary semaphore are those that have only two values 0 
and 1. semaphores are not provided by hardware. Semaphore is used to 
solve critical section problem. 

 
A monitor is a software module consisting of one or more 

procedures, an initialization sequence and local data. Components of 
monitors are shared data declaration, shared data initialization, 
operations on shared data and synchronization statement.  

 
5.9 MODEL QUESTION   

 
Q.1 Explain in brief race condition?  
Q.2 Define the term critical section?  
Q.3 What are the requirement for critical section problem?  
Q.4 Write a short note on:  

 Semaphore  
 Monitors  

Q.5 What are semaphores? How do they implement mutual 
exclusion? 

Q.6 Describe hardware solution to the critical section problem? 
 
 

����� 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 52 
 

 
 

6 
 

DEADLOCK 
 

Unit Structure 
 

6.0 Objectives  
6.1 Introduction  
6.2 Deadlock Characterization  

6.2.1 Resource Allocation Graph  
6.3 Method for Handling Deadlock  
6.4 Deadlock Prevention Recovery  
6.5 Avoidance and Protection  
6.6 Deadlock Detection  
6.7 Recovery from Deadlock  
6.8 Summary  
6.9 Model Question   

 
6.0 OBJECTIVES   

 
After going through this unit, you will be able to:  

To develop a description of deadlocks, which prevent sets of 
concurrent processes from completing their tasks.  
To present number of different methods for preventing or 
avoiding deadlocks in a computer system.  

 
6.1 INTRODUCTION   

 
In a multiprogramming environment, several processes may 

compete for a finite number of resources. A process requests resources; 
if the resources are not available at that time, the process enters a wait 
state. It may happen that waiting processes will never again change 
state, because the resources they have requested are held by other 
waiting processes. This situation is called deadlock. 

 
 
 

If a process requests an instance of a resource type, the allocation 
of any instance of the type will satisfy the request. If it will not, then the 
instances are not identical, and the resource type classes have not been 
defined properly. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 53 
 

 
A process must request a resource before using it, and must 

release the resource after using it. A process may request as many 
resources as it requires to carry out its designated task. 

 
Under the normal mode of operation, a process may utilize a 

resource in only the following sequence: 
 

 Request: If the request cannot be granted immediately, then the 
requesting process must wait until it can acquire the resource.  

 Use: The process can operate on the resource.  
 Release: The process releases the resource   

 
6.2 DEADLOCK CHARACTERIZATION   

 
In deadlock, processes never finish executing and system 

resources are tied up, preventing other jobs from ever starting.  
Necessary Conditions 

 
A deadlock situation can arise if the following four conditions 

hold simultaneously in a system: 
 

 Mutual exclusion: At least one resource must be held in a non-
sharable mode; that is, only one process at a time can use the resource. If 
another process requests that resource, the requesting process must be 
delayed until the resource has been released. 

 
 Hold and wait : There must exist a process that is holding at least 
one resource and is waiting to acquire additional resources that are 
currently being held by other processes. 

 
 No preemption : Resources cannot be preempted; that is, a resource 
can be released only voluntarily by the process holding it, after that 
process, has completed its task. 

 
 Circular wait: There must exist a set {P0, P1, ..., Pn } of waiting 
processes such that P0 is waiting for a resource that is held by P1, P1 is 
waiting for a resource that is held by P2, …., Pn-1 is waiting for a 
resource that is held by Pn, and Pn is waiting for a resource that is held 
by P0. 

 
6.2.1 Resource-Allocation Graph  

Deadlocks can be described more precisely in terms of a directed 
graph called a system resource-allocation graph. The set 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 54 
 

 
 

of vertices V is partitioned into two different types of nodes P = {P1, P2, 
… Pn} the set consisting of all the active processes in the system; and R 
= {R1, R2, …, R1}, the set consisting of all resource types in the 
system. 

 
A directed edge from process Pi to resource type Rj is denoted 

by Pi → Rj, it signifies that process Pi requested an instance of resource 
type Rj and is currently waiting for that resource. A directed edge from 
resource type Rj toprocess Pi is denoted by Rj_ Pi it signifies that an 
instance of resource type Rj has been allocated to process Pi. A directed 
edge Pi_ Rj is called a request edge; a directed edge Rj _ Pi is called an 
assignment edge. 

 
When process Pi requests an instance of resource type Rj, a 

request edge is inserted in the resource-allocation graph. When this 
request can be fulfilled, the request edge is instantaneously transformed 
to an assignment edge. When the process no longer needs access to the, 
resource it releases the resource, and as a result the assignment edge is 
deleted. 

 
Definition of a resource-allocation graph, it can be shown that, if 

the graph contains no cycles, then no process in the system is 
deadlocked. If, on the other hand, the graph contains the cycle, then a 
deadlock must exist. 

 
If each resource type has several instances, then a cycle implies 

that a deadlock has occurred. If the cycle involves only a set of 
resources types, each of which has only a single instance, then a 
deadlock has occurred. Each process involved in the cycle is 
deadlocked. In this case, a cycle in the graph is both a necessary and a 
sufficient condition for the existence of deadlock.  

A set of vertices V and a set of edges E. 
 

V is partitioned into two types:  
 P = {P1, P2, …, Pn}, the set consisting of all the 

processes in the system.  
 R = {R1, R2, …, Rm}, the set consisting of all resource 

types in the system.  
request edge – directed edge P1    Rj 

 
assignment edge – directed edge RjPi 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 55 
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. Resource Allocation Graph 
 

If each resource type has several instance, then a cycle does not 
necessarily imply that a deadlock incurred. In this case, a cycle in the 
graph is a necessary but not a sufficient condition for the existence of 
deadlock. 

 
Suppose that process P3requests an instance of resource type R2 

Since no resource instance is currently available, a request edge P3 → 
R2 is added to the graph. At this point, two minimal cycles exist in the 
system: 

 
P1 → R1 → P2 → R3 → P3 → R2 → P1  
P2 → R3 → P3 → R2 → P2   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. Resource Allocation Graph with Deadlock 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 56 
 

 
 

Processes P1, P2, and P3 are deadlocked. Process P2 is waiting 
for the resource R3, which is held by process P3. Process P3, on the 
other hand, is waiting for either process P1 or process P2 to release 
resource R2. In addition, process PI is waiting for process P2 to release 
resource R1.  

 
6.3 METHOD FOR HANDLING DEADLOCK 

/DETECTION  
 

There are are three different methods for dealing with the deadlock 
problem:  
 We can use a protocol to ensure that the system will never enter a 

deadlock state.  
 We can allow the system to enter a deadlock state and then recover.  
 We can ignore the problem all together, and pretend that deadlocks 

never occur in the system. This solution is the one used by most 
operating systems, including UNIX. 

 
Deadlock avoidance, on the other hand, requires that the 

operating system be given in advance additional information concerning 
which resources a process will request and use during its lifetime. With 
this additional knowledge, we can decide for each request whether or 
not the process should wait. Each request requires that the system 
consider the resources currently available, the resources currently 
allocated to each process, and the future requests and releases of each 
process, to decide whether the current request can be satisfied or must 
be delayed. 

 
If a system does not employ either a deadlock-prevention or a 

deadlock avoidance algorithm, then a deadlock situation may occur If a 
system does not ensure that a deadlock will never occur, and also does 
not provide a mechanism for deadlock detection and recovery, then we 
may arrive at a situation where the system is in a deadlock state yet has 
no way of recognizing what has happened.  

 
6.4 DEADLOCK PREVENTION   

 
For a deadlock to occur, each of the four necessary-conditions 

must hold. By ensuring that at least on one these conditions cannot hold, 
we can prevent the occurrence of a deadlock. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 57 
 

 
 

6.4.1 Mutual Exclusion  
The mutual-exclusion condition must hold for non-sharable 

resources. For example, a printer cannot be simultaneously shared by 
several processes. Sharable resources, on the other hand, do not require 
mutually exclusive access, and thus cannot be involved in a deadlock. 

 
6.4.2 Hold and Wait  
 When whenever a process requests a resource, it does not hold any 
other resources. One protocol that be used requires each process to 
request and be allocated all its resources before it begins execution. 

 
 An alternative protocol allows a process to request resources only 
when the process has none. A process may request some resources and 
use them. Before it can request any additional resources, however it 
must release all the resources that it is currently allocated here are two 
main disadvantages to these protocols. First, resource utilization may be 
low, since many of the resources may be allocated but unused for a long 
period. In the example given, for instance, we can release the tape drive 
and disk file, and then again request the disk file and printer, only if we 
can be sure that our data will remain on the disk file. If we cannot be 
assured that they will, then we must request all resources at the 
beginning for both protocols. Second, starvation is possible. 

 
6.4.3 No Preemption  

If a process that is holding some resources requests another 
resource that cannot be immediately allocated to it, then all resources 
currently being held are preempted. That is this resources are implicitly 
released. The preempted resources are added to the list of resources for 
which the process is waiting process will be restarted only when it can 
regain its old resources, as well as the new ones that it is requesting. 

 
6.4.4 Circular Wait  

Circular-wait condition never holds is to impose a total ordering 
of all resource types, and to require that each process requests resources 
in an increasing order of enumeration. 

 
Let R = {R1, R2, ..., Rn} be the set of resource types. We assign 

to each resource type a unique integer number, which allows us to 
compare two resources and to determine whether one precedes another 
in our ordering. Formally, we define a one-to-one function F: R _ N, 
where N is the set of natural numbers. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 58 
 

   
 
 

6.5 DEADLOCK AVOIDANCE   
 

Prevent deadlocks requests can be made. The restraints ensure 
that at least one of the necessary conditions for deadlock cannot occur, 
and, hence, that deadlocks cannot hold. Possible side effects of 
preventing deadlocks by this, melted, however, are Tow device 
utilization and reduced system throughput. 

 
An alternative method for avoiding deadlocks is to require 

additional information about how resources are to be requested. For 
example, in a system with one tape drive and one printer, we might be 
told that process P will request first the tape drive, and later the printer, 
before releasing both resources. Process Q on the other hand, will 
request first the printer, and then the tape drive. With this knowledge of 
the complete sequence of requests and releases for each process we can 
decide for each request whether or not the process should wait. 

 
 deadlock-avoidance algorithm dynamically examines the 

resource-allocation state to ensure that there can never be a circular wait 
condition. The resource allocation state is defined by the number of 
available and allocated resources, and the maximum demands of the 
processes. 

 
6.5.1 Safe State  

A state is safe if the system can allocate resources to each 
process (up to its maximum) in some order and still avoid a deadlock. 
More formally, a system is in a safe state only if there exists a safe 
sequence. A sequence of processes <P1, P2, .. Pn> is a safe sequence for 
the current allocation state if, for each Pi the resources that Pj can still 
request can be satisfied by the currently available resources plus the 
resources held by all the Pj, with j < i. In this situation, if the resources 
that process Pi needs are not immediately available, then Pi can wait 
until all Pj have finished. When they have finished, Pi can obtain all of 
its needed resources, complete its designated task return its allocated 
resources, and terminate. When Pi terminates, Pi + 1 can obtain its 
needed resources, and so on. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 59 
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. Safe, Unsafe & Deadlock State 
 

If no such sequence exists, then the system state is said to be 
unsafe. 

 
6.5.2 Resource-Allocation Graph Algorithm  

Suppose that process Pi requests resource Rj. The request can be 
granted only if converting the request edge Pi → Rj to an assignment 
edge Rj → Pi does not result in the formation of a cycle in the resource-
allocation graph. 

 
6.5.3 Banker's Algorithm  

The resource-allocation graph algorithm is not applicable to a 
resource-allocation system with multiple instances of each resource 
type. The deadlock-avoidance algorithm that we describe next is 
applicable to such a system, but is less efficient than the resource-
allocation graph scheme. This algorithm is commonly known as the 
banker's algorithm.  

 
6.6 DEADLOCK DETECTION   

 
If a system does not employ either a deadlock-prevention or a 

deadlock avoidance algorithm, then a deadlock situation may occur. 
 

 An algorithm that examines the state of the system to determine 
whether a deadlock has occurred.  
 An algorithm to recover from the deadlock. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 60 
 

 
 

6.6.1 Single Instance of Each Resource Type  
If all resources have only a single instance, then we can define a 

deadlock detection algorithm that uses a variant of the resource-
allocation graph, called a wait-for graph. We obtain this graph from the 
resource-allocation graph by removing the nodes of type resource and 
collapsing the appropriate edges. 

 
6.6.2 Several Instances of a Resource Type  

The wait-for graph scheme is not applicable to a resource-
allocation system with multiple instances of each resource type.  
The algorithm used are :  
 Available: A vector of length m indicates the number of available 
resources of each type.  
 Allocation: An n x m matrix defines the number of resources of each 
type currently allocated to each process. 
 Request: An n x m matrix indicates the current request of each 
process. If Request [i, j] = k, then process P, is requesting k more 
instances of resource type Rj. 

 
6.6.3 Detection-Algorithm Usage  

If deadlocks occur frequently, then the detection algorithm 
should be invoked frequently. Resources allocated to deadlocked 
processes will be idle until the deadlock can be broken.  

 
6.7 RECOVERY FROM DEADLOCK   

 
When a detection algorithm determines that a deadlock exists, 

several alternatives exist. One possibility is to inform the operator that a 
deadlock has spurred, and to let the operator deal with the deadlock 
manually. The other possibility is to let the system recover from the 
deadlock automatically. There are two options for breaking a deadlock. 
One solution is simply to abort one or more processes to break the 
circular wait. The second option is to preempt some resources from one 
or more of the deadlocked processes. 

 
6.7.1 Process Termination  

To eliminate deadlocks by aborting a process, we use one of two 
methods. In both methods, the system reclaims all resources allocated to 
the terminated processes. 

 
 Abort all deadlocked processes: This method clearly will break the 
dead – lock cycle, but at a great expense, since these 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 61 
 

 
 

processes may have computed for a long time, and the results of these 
partial computations must be discarded, and probably must be 
recomputed. 

 
 Abort one process at a time until the deadlock cycle is eliminated: 
This method incurs considerable overhead, since after each process is 
aborted a deadlock-detection algorithm must be invoked to determine 
whether a processes are still deadlocked. 

 
6.7.2 Resource Preemption  

To eliminate deadlocks using resource preemption, we 
successively preempt some resources from processes and give these 
resources to other processes until he deadlock cycle is broken. 

 
The three issues are considered to recover from deadlock  
 Selecting a victim  
 Rollback  
 Starvation   

 
6.8 SUMMARY  

 
 

A deadlocked state occurs when two or more processes are 
waiting indefinitely for an event that can be caused only one of the 
waiting processes. There are three principal methods for dealing with 
deadlocks: 

 
 

Use some protocol to prevent or avoid deadlocks, entering that 
the system will never enter a deadlocked state.  
Allow the system to enter a deadlocked state, detect it, and then 
recover.  
Ignore the problem altogether and pretend that deadlocks never 
occur in the system. 

 
Deadlock prevention is a set of methods for ensuring that at least 

one of the necessary condition cannot hold. Deadlock avoidance 
requires additional information about how resources are to be requested. 
Deadlock avoidance algorithm dynamically examines the resource 
allocation state to ensure that a circular wait condition can never exist. 
Deadlock occur only when some process makes a request that cannot e 
granted immediately. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 62 
 

  
 

6.9 MODEL QUESTION   
 

Q.1 Write a short note on deadlock?  
Q.2 Explain the characteristic of deadlock?  
Q.3 Describe various methods for deadlock prevention?  
Q.4 Explain the resource allocation graph?  
Q.5 Write a note on ‘safe state’?  
Q.6 Explain how deadlocks are detected and corrected?  
Q.7 What are the difference between a deadlock prevention and 

deadlock Avoidance? 
 
 
 
 

����� 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 63 
 

 
 

 
 

MEMORY MANAGEMENT 
 

Unit Structure 
 

7.0 Objectives 
7.1 Introduction 
7.2 Memory Partitioning 
7.3 Swapping 
7.4 Contiguous Allocation 
7.5 Paging 
7.6 Segmentation 
7.7 Summary 
7.8 Model Question  

 
7.0 OBJECTIVE   

 
To provide a detailed description of various ways of 
organizing memory hardware.  
To discuss various memory-management techniques, 
including paging and segmentation.  
To provide a detailed description of the Intel Pentium, which 
supports both pure segmentation and segmentation with 
paging.  

 
7.1 INTRODUCTION  

 
 

Memory is central to the operation of a modern computer system. 
Memory is a large array of words or bytes, each with its own address. 

 
A program resides on a disk as a binary executable file. The 

program must be brought into memory and placed within a process for it 
to be executed Depending on the memory management in use the 
process may be moved between disk and memory during its execution. 
The collection of processes on the disk that are waiting to be brought 
into memory for execution forms the input queue. i.e. selected one of the 
process in the input queue and to load that process into memory. We can 
provide protection by using two registers, usually a base and a limit, as 
shown in fig. 7.1. the base 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 64 
 

 
 

register holds the smallest legal physical memory address; the limit 
register specifies the size of the range. For example, if the base register 
holds 300040 and the limit register is 120900, then the program can 
legally access all addresses from 300040 through 420939 (inclusive).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 7.1 A base and limit register define a logical address 
space.  

 
7.2 MEMORY PARTITIONING   

 
The binding of instructions and data to memory addresses can be 

done at any step along the way:  
Compile time: If it is known at compile time where the process 
will reside in memory, then absolute code can be generated. 

 
Load time: If it is not known at compile time where the process 
will reside in memory, then the compiler must generate re-
locatable code. 

 
Execution time: If the process can be moved during its 
execution from one memory segment to another, then binding 
must be delayed until run time. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 65 
 

 
 

7.2.1 Dynamic Loading  
Better memory-space utilization can be done by dynamic 

loading. With dynamic loading, a routine is not loaded until it is called. 
All routines are kept on disk in a re-locatable load format. The main 
program is loaded into memory and is executed. 

 
The advantage of dynamic loading is that an unused routine is 

never loaded. 
 

7.2.2 Dynamic Linking  
Most operating systems support only static linking, in which 

system language libraries are treated like any other object module and 
are combined by the loader into the binary program image. The concept 
of dynamic linking is similar to that of dynamic loading. Rather than 
loading being postponed until execution time, linking is postponed. This 
feature is usually used with system libraries, such as language 
subroutine libraries. With dynamic linking, a stub is included in the 
image for each library-routine reference. This stub is a small piece of 
code that indicates how to locate the appropriate memory-resident 
library routing. 

 
The entire program and data of a process must be in physical 

memory for the process to execute. The size of a process is limited to 
the size of physical memory. So that a process can be larger than the 
amount of memory allocated to it, a technique called overlays is 
sometimes used. The idea of overlays is to keep in memory only those 
instructions and data that are needed at any given time. When other 
instructions are needed, they are loaded into space that was occupied 
previously by instructions that are no longer needed. 

 
 
 

Example, consider a two-pass assembler. During pass 1, it 
constructs a symbol table; then, during pass 2, it generates machine-
language code. We may be able to partition such an assembler into pass 
1 code, pass 2 code, the symbol table  
1, and common support routines used by both pass 1 and pass 2.  
Let us consider 

 
Pass1 70K 
Pass 2 80K 
Symbol table 20K 
Common routines 30K 

 
To load everything at once, we would require 200K of memory. 

If only 150K is available, we cannot run our process. But 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 66 
 

 
 

pass 1 and pass 2 do not need to be in memory at the same time. We 
thus define two overlays: Overlay A is the symbol table, common 
routines, and pass 1, and overlay B is the symbol table, common 
routines, and pass 2. 

 
We add an overlay driver (10K) and start with overlay A in 

memory. When we finish pass 1, we jump to the overlay driver, which 
reads overlay B into memory, overwriting overlay A, and then transfers 
control to pass 2. Overlay A needs only 120K, whereas overlay B needs 
130K. 

 
As in dynamic loading, overlays do not require any special 

support from the operating system. 
 

7.2.3 Logical versus Physical Address Space  
An address generated by the CPU is commonly referred to as a 

logical address, whereas an address seen by the memory unit is 
commonly referred to as a physical address. 

 
The compile-time and load-time address-binding schemes result 

in an environment where the logical and physical addresses are the 
same. The execution-time address-binding scheme results in an 
environment where the logical and physical addresses differ. In this 
case, we usually refer to the logical address as a virtual address. The set 
of all logical addresses generated by a program is referred to as a logical 
address space; the set of all physical addresses corresponding to these 
logical addresses is referred to as a physical address space. 

 
The run-time mapping from virtual to physical addresses is done 

by the memory management unit (MMU), which is a hardware device. 
 

The base register is called a relocation register. The value in the 
relocation register is added to every address generated by a user process 
at the time it is sent to memory. For example, if the base is at 13000, 
then an attempt by the user to address location 0 dynamically relocated 
to location 14,000; an access to location 347 is mapped to location 
13347. The MS-DOS operating system running on the Intel 80x86 
family of processors uses four relocation registers when loading and 
running processes. 

 
The user program never sees the real physical addresses. The 

program can create a pointer to location 347 store it memory, 
manipulate it, compare it to other addresses all as the number 347. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 67 
 

 
 

The user program deals with logical addresses. The memory-
mapping hardware converts logical addresses into physical addressed 
Logical addresses (in the range 0 to max) and physical addresses (in the 
range R + 0 to R + max for a base value R). The user generates only 
logical addresses. 

 
The concept of a logical address space that is bound to a separate 

physical address space is central to proper memory management.  
 

7.3 SWAPPING  
 
 

A process, can be swapped temporarily out of memory to a 
backing store, and then brought back into memory for continued 
execution. Assume a multiprogramming environment with a round robin 
CPU-scheduling algorithm. When a quantum expires, the memory 
manager will start to swap out the process that just finished, and to swap 
in another process to the memory space that has been freed ( Fig 7.2). 
When each process finishes its quantum, it will be swapped with another 
process.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 7.2 Swapping of two processes using a disk as a 
blocking store 

 
A variant of this swapping policy is used for priority-based 

scheduling algorithms. If a higher-priority process arrives and wants 
service, the memory manager can swap out the lower-priority process so 
that it can load and execute the higher priority process. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 68 
 

 
 

When the higher priority process finishes, the lower-priority process can 
be swapped back in and continued. This variant of swapping is 
sometimes called rollout, roll in. A process is swapped out will be 
swapped back into the same memory space that it occupies previously. 
If binding is done at assembly or load time, then the process cannot be 
moved to different location. If execution-time binding is being used, 
then it is possible to swap a process into a different memory space. 

 
Swapping requires a backing store. The backing store is 

commonly a fast disk. It is large enough to accommodate copies of all 
memory images for all users. The system maintains a ready queue 
consisting of all processes whose memory images are on the backing 
store or in memory and are ready to run. 

 
The context-switch time in such a swapping system is fairly high. 

Let us assume that the user process is of size 100K and the backing store 
is a standard hard disk with transfer rate of 1 megabyte per second. The 
actual transfer of the 100K process to or from memory takes  

100K / 1000K per second = 1/10 second  
= 100 milliseconds  

 
 

7.4 CONTIGUOUS ALLOCATION   
 

The main memory must accommodate both the operating system 
and the various user processes. The memory is usually divided into two 
partitions, one for the resident operating system, and one for the user 
processes. 

 
To place the operating system in low memory. Thus, we shall 

discuss only me situation where the operating system resides in low 
memory (Figure 8.5). The development of the other situation is similar. 
Common Operating System is placed in low memory. 

 
7.4.1 Single-Partition Allocation  

If the operating system is residing in low memory, and the user 
processes are executing in high memory. And operating-system code 
and data are protected from changes by the user processes. We also need 
protect the user processes from one another. We can provide this 2 
protection by using a relocation registers. 

 
The relocation register contains the value of the smallest physical 

address; the limit register contains the range of logical 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 69 
 

 
 

addresses (for example, relocation = 100,040 and limit = 74,600). With 
relocation and limit registers, each logical address must be less than the 
limit register; the MMU maps the logical address dynamically by adding 
the value in the relocation register. This mapped address is sent to 
memory. 

 
The relocation-register scheme provides an effective way to 

allow the operating system size to change dynamically. 
 

7.4.2 Multiple-Partition Allocation  
One of the simplest schemes for memory allocation is to divide 

memory into a number of fixed-sized partitions. Each partition may 
contain exactly one process. Thus, the degree of multiprogramming is 
bound by the number of partitions. When a partition is free, a process is 
selected from the input queue and is loaded into the free partition. When 
the process terminates, the partition becomes available for another 
process. 

 
The operating system keeps a table indicating which parts of 

memory are available and which are occupied. Initially, all memory is 
available for user processes, and is considered as one large block, of 
available memory, a hole. When a process arrives and needs memory, 
we search for a hole large enough for this process. 

 
For example, assume that we have 2560K of memory available 

and a resident operating system of 400K. This situation leaves 2160K 
for user processes. FCFS job scheduling, we can immediately allocate 
memory to processes P1, P2, P3. Holes size 260K that cannot be used by 
any of the remaining processes in the input queue. Using a round-robin 
CPU-scheduling with a quantum of 1 time unit, process will terminate at 
time 14, releasing its memory. 

 
 
 

Memory allocation is done using Round-Robin Sequence as 
shown in fig. When a process arrives and needs memory, we search this 
set for a hole that is large enough for this process. If the hole is too 
large, it is split into two: One part is allocated to the arriving process; 
the other is returned to the set of holes. When a process terminates, it 
releases its block of memory, which is then placed back in the set of 
holes. If the new hole is adjacent to other holes, we merge these adjacent 
holes to form one larger hole. 

 
This procedure is a particular instance of the general dynamic 

storage-allocation problem, which is how to satisfy a request of size n 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 70 
 

from a list of free holes. There are many solutions to this problem. The 
set of holes is searched to determine which 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 71 
 

 
 

hole is best to allocate, first-fit, best-fit, and worst-fit are the most 
common strategies used to select a free hole from the set of available 
holes. 

 
First-fit: Allocate the first hole that is big enough. Searching can 
start either at the beginning of the set of holes or where the 
previous first-fit search ended. We can stop searching as soon as 
we find a free hole that is large enough. 

 
Best-fit: Allocate the smallest hole that is big enough. We must 
search the entire list, unless the list is kept ordered by size. This 
strategy-produces the smallest leftover hole.  
Worst-fit: Allocate the largest hole. Again, we must search the 
entire list unless it is sorted by size. This strategy produces the 
largest leftover hole which may be more useful than the smaller 
leftover hole from a best-t approach. 

 
7.4.3 External and Internal Fragmentation  

As processes are loaded and removed from memory, the free 
memory space is broken into little pieces. External fragmentation exists 
when enough to the memory space exists to satisfy a request, but it is 
not contiguous; storage is fragmented into a large number of small 
holes. 

 
Depending on the total amount of memory storage and the 

average process size, external fragmentation may be either a minor or a 
major problem. 

 
Given N allocated blocks, another 0.5N blocks will be lost due to 

fragmentation. That is, one-third of memory may be unusable. This 
property is known as the 50- percent rule. 

 
Internal fragmentation - memory that is internal to partition, but 

is not being used.  
 

7.5 PAGING   
 

External fragmentation is avoided by using paging. In this 
physical memory is broken into blocks of the same size called pages. 
When a process is to be executed, its pages are loaded into any available 
memory frames. Every address generated by the CPU is divided into any 
two parts: a page number(p) and a page offset(d) (Fig 7.3). The page 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 72 
 

number is used as an index into a page table. The page table contains the 
base address of each page 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 73 
 

 
 

in physical memory. This base address is combined with the gage offset 
to define the physical memory address that is sent to the memory unit.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 7.3 Paging Hardware 
 

The page size like is defined by the hardware. The size of a page 
is typically a power of 2 varying between 512 bytes and 8192 bytes per 
page, depending on the computer architecture. The selection of a power 
of 2 as a page size makes the translation of a logical address into a page 
number and page offset. lf the size of logical address space is 2m, and a 
page size is 2n addressing units (bytes or words), then the high-order m - 
n bits of a logical address designate the page number, and the n low-
order bits designate the page offset. Thus, the logical address is as 
follows: 

 
page number  

page 
 
offset  

p 
 
d  

m – n 
 
n 

 
where p is an index into the page table and d is the displacement 

within the page. 
 

Paging is a form of dynamic relocation. Every logical address is 
bound by the paging hardware to some physical address. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 74 
 

 
 

When we use a paging scheme, we have no external 
fragmentation: Any free frame can be allocated to a process that needs 
it. 

 
If process size is independent of page size, we can have internal 

fragmentation to average one-half page per process. 
 

When a process arrives in the system to be executed, its size, 
expressed in pages, is examined. Each page of the process needs one 
frame. Thus, if the process requires n pages, there must be at least n 
frames available in memory. If there are n frames available, they are 
allocated to this arriving process. The first page of the process is loaded 
into one of the allocated frames and the frame number is put in the page 
table for this process. The next page is loaded into another frame, and its 
frame number is put into the page table, and so on. 

 
The user program views that memory as one single contiguous 

space, containing only this one program. But the user program is 
scattered throughout physical memory and logical addresses are 
translated into physical addresses. 

 
The operating system is managing physical memory, it must be 

aware of the allocation details of physical memory: which frames are 
allocated, which frames are available, how many total frames there are, 
and so on. This information is generally kept in a data structure called a 
frame table. The frame table has one entry for each physical page frame, 
indicating whether the latter is free allocated and, if it is allocated, to 
which page of which process or processes. 

 
The operating system maintains a copy of the page table for each 

process. Paging therefore increases the context-switch time.  
 

7.6 SEGMENTATION   
 

A user program can be subdivided using segmentation, in which 
the program and its associated data are divided into a number of 
segments. It is not required that all segments of all programs be of the 
same length, although there is a maximum segment length. As with 
paging, a logical address using segmentation consists of two parts, in 
this case a segment number and an offset. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 75 
 

 
 

Because of the use of unequal-size segments, segmentation is 
similar to dynamic partitioning. In segmentation, a program may occupy 
more than one partition, and these partitions need not be contiguous. 
Segmentation eliminates internal fragmentation but, like dynamic 
partitioning, it suffers from external fragmentation. However, because a 
process is broken up into a number of smaller pieces, the external 
fragmentation should be less. Whereas paging is invisible to the 
programmer, segmentation usually visible and is provided as a 
convenience for organizing programs and data. 

 
Another consequence of unequal-size segments is that there is no 

simple relationship between logical addresses and physical addresses. 
Segmentation scheme would make use of a segment table for each 
process and a list of free blocks of main memory. Each segment table 
entry would have to as in paging give the starting address in main 
memory of the corresponding segment. The entry should also provide 
the length of the segment, to assure that invalid addresses are not used. 
When a process enters the Running state, the address of its segment 
table is loaded into a special register used by the memory management 
hardware. 

 
Consider an address of n + m bits, where the leftmost n bits are 

the segment number and the rightmost m bits are the offset. The 
following steps are needed for address translation: 

 
Extract the segment number as the leftmost n bits of the logical 
address.  
Use the segment number as an index into the process segment 
table to find the starting physical address of the segment.  
Compare the offset, expressed in the rightmost m bits, to the 
length of the segment. If the offset is greater than or equal to the 
length, the address is invalid.  
The desired physical address is the sum of the starting physical 
address of the segment plus the offset.  

Segmentation and paging can be combined to have a good result.   
 

7.7 SUMMARY  
 
 

Memory management algorithms for multi programmed 
operating systems range from the simple single user system approach to 
paged segmentation. The most important determinant of the method 
used in a particular system is the hardware provided, every memory 
address generated by the CPU must be checked for 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 76 
 

 
 

legality and possibly mapped to a physical address, the checking cannot 
be implemented in software. Hence, we are constrained by the hardware 
available. 

 
The various memory management algorithms(continuous 

allocation, paging, segmentation, and combinations of paging and 
segmentation) differ in many aspects. In computing different memory 
management strategies, we use hardware support, performance, 
fragmentation, relocation, swapping, sharing and protection.   

 
 

7.8 MODEL QUESTION   
 

Q.1 Differentiate internal and external fragmentation?  
Q.2 Explain segmentation?  
Q.3 What are hardware is required for paging?  
Q.4 Write a note on virtual memory?  
Q.5 Explain Page replacement algorithm in detail?  
Q.6 Compare demand paging and segmentation?  
Q.7 Explain page replacement algorithm? 

 
 

�  
�  

����� 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 77 
 

 
 

8 
 

VIRTUAL MEMORY 
 

Unit Structure 
 

8.0 Objectives  
8.1 Virtual Memory  
8.2 Demand Paging  
8.3 Performance of demand paging  
8.4 Virtual Memory Concepts  
8.5 Page Replacement Algorithms  
8.6 Allocation Algorithms  
8.7 Summary  
8.8 Model Question   

 
8.0 OBJECTIVE   

 
To describe the benefits of a virtual memory system.  

To explain the concepts of demand paging, page-
replacement algorithms, and allocation of page frames.  

To discuss the principle of the working-set model.   
 

8.1 VIRTUAL MEMORY  
 
 

Virtual memory is a technique that allows the execution of 
process that may not be completely in memory. The main visible 
advantage of this scheme is that programs can be larger than 
physical memory. 

 
Virtual memory is the separation of user logical memory from 
physical memory this separation allows an extremely large 
virtual memory to be provided for programmers when only a 
smaller physical memory is available (Fig 8.1). 

 
 

Following are the situations, when entire program is not required 
to load fully.  

 User written error handling routines are used only when an error 
occurs in the data or computation. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 78 
 

 
 

 Certain options and features of a program may be used rarely.  
 Many tables are assigned a fixed amount of address space even 

though only a small amount of the table is actually used. 
 
 
 

The ability to execute a program that is only partially in memory 
would counter many benefits. 

 
 Less number of I/O would be needed to load or swap each user 

program into memory. 
 

 A program would no longer be constrained by the amount of 
physical memory that is available. 

 
 Each user program could take less physical memory, more 

programs could be run the same time, with a corresponding 
increase in CPU utilization and throughput.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.1 Diagram showing virtual memory that is larger than  
physical memory. 

 
Virtual memory is commonly implemented by demand paging. It 

can also be implemented in a segmentation system. Demand 
segmentation can also be used to provide virtual memory. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 79 
 

  
 

8.2 DEMAND PAGING   
 

A demand paging is similar to a paging system with 
swapping(Fig 8.2). When we want to execute a process, we swap it into 
memory. Rather than swapping the entire process into memory. 

 
 
 

When a process is to be swapped in, the pager guesses which 
pages will be 
used before the process is swapped out again Instead of swapping in a 
whole process, the pager brings only those necessary pages into 
memory. Thus, it avoids reading into memory pages that will not be 
used in anyway, decreasing the swap time and the amount of physical 
memory needed. 

 
Hardware support is required to distinguish between those pages 

that are in memory and those pages that are on the disk using the valid-
invalid bit scheme. Where valid and invalid pages can be checked 
checking the bit and marking a page will have no effect if the process 
never attempts to access the pages. While the process executes and 
accesses pages that are memory resident, execution proceeds normally.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.2 Transfer of a paged memory to continuous disk 
space 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 80 
 

 
 

Access to a page marked invalid causes a page-fault trap. This 
trap is the result of the operating system's failure to bring the desired 
page into memory. But page fault can be handled as following (Fig 8.3):   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.3 Steps in handling a page fault 
 

 We check an internal table for this process to determine whether 
the reference was a valid or invalid memory access. 

 
 If the reference was invalid, we terminate the process. If .it was 

valid, but we have not yet brought in that page, we now page in 
the latter. 

 
 We find a free frame. 

 
 We schedule a disk operation to read the desired page into the 

newly allocated frame. 
 

 When the disk read is complete, we modify the internal table 
kept with the process and the page table to indicate that the page 
is now in memory. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 81 
 

 
 

 We restart the instruction that was interrupted by the illegal 
address trap. The process can now access the page as though it 
had always been memory. 

 
Therefore, the operating system reads the desired page into 

memory and restarts the process as though the page had always been in 
memory. 

 
The page replacement is used to make the frame free if they are 

not in used. If no frame is free then other process is called in. 
 

8.2.1 Advantages of Demand Paging:  
 Large virtual memory.  
 More efficient use of memory.  
 Unconstrained multiprogramming. There is no limit on degree of 

multiprogramming. 
 

8.2.2 Disadvantages of Demand Paging:  
 Number of tables and amount of processor over head for 

handling page interrupts are greater than in the case of the simple 
paged management techniques.  

 due to the lack of an explicit constraints on a jobs address space 
size.  

 
8.3 PAGE REPLACEMENT ALGORITHM   

 
There are many different page replacement algorithms. We 

evaluate an algorithm by running it on a particular string of memory 
reference and computing the number of page faults. The string of 
memory references is called reference string. Reference strings are 
generated artificially or by tracing a given system and recording the 
address of each memory reference. The latter choice produces a large 
number of data. 

 
 For a given page size we need to consider only the page number, not 
the 
entire address. 

 
 if we have a reference to a page p, then any immediately following 
references to page p will never cause a page fault. Page p will be in 
memory after the first reference; the immediately following references 
will not fault. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 82 
 

 
 

Eg:- consider the address sequence  
0100,  0432,  0101,  0612,  0102,  0103,  0104,  0101,  0611,  0102,  
0103,  0104,  0101,  0610,  0102,  0103,  0104,  0104,  0101,  0609,  
0102, 0105 and reduce to 1, 4, 1, 6,1, 6, 1, 6, 1, 6, 1 

 
To determine the number of page faults for a particular reference 

string and page replacement algorithm, we also need to know the 
number of page frames available. As the number of frames available 
increase, the number of page faults  
will decrease. 

 
8.3.1 FIFO Algorithm  

The simplest page-replacement algorithm is a FIFO algorithm. A 
FIFO replacement algorithm associates with each page the time when 
that page was brought into memory. When a page must be replaced, the 
oldest page is chosen. We can create a FIFO queue to hold all pages in 
memory. 

 
The first three references (7, 0, 1) cause page faults, and are 

brought into these empty eg. 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1 
and consider 3 frames. This replacement means that the next reference 
to 0 will fault. Page 1 is then replaced by page 0. 

 
8.3.2 Optimal Algorithm  

An optimal page-replacement algorithm has the lowest page-fault 
rate of all algorithms. An optimal page-replacement algorithm exists, 
and has been called OPT or MIN. It is simply Replace the page that will 
not be used for the longest period of time. 

 
Now consider the same string with 3 empty frames. 

 
The reference to page 2 replaces page 7, because 7 will not be 

used until reference 18, whereas page 0 will be used at 5, and page 1 at 
14. The reference to page 3 replaces page 1, as page 1 will be the last of 
the three pages in memory to be referenced again. Optimal replacement 
is much better than a FIFO. 

 
The optimal page-replacement algorithm is difficult to 

implement, because it requires future knowledge of the reference string. 
 

8.3.3 LRU Algorithm  
The FIFO algorithm uses the time when a page was brought into 

memory; the OPT algorithm uses the time when a page is to be 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 83 
 

 
 

used. In LRU replace the page that has not been used for the longest 
period of time. 

 
LRU replacement associates with each page the time of that 

page's last use. When a page must be replaced, LRU chooses that page 
that has not been used for the longest period of time. 

 
Let SR be the reverse of a reference string S, then the page-fault 

rate for the OPT algorithm on S is the same as the page-fault rate for the 
OPT algorithm on SR. 

 
8.3.4 LRU Approximation Algorithms  

Some systems provide no hardware support, and other page-
replacement algorithm. Many systems provide some help, however, in 
the form of a reference bit. The reference bit for a page is set, by the 
hardware, whenever that page is referenced. Reference bits are 
associated with each entry in the page table Initially, all bits are cleared 
(to 0) by the operating system. As a user process executes, the bit 
associated with each page referenced is set (to 1) by the hardware. 

 
8.3.4.1 Additional-Reference-Bits Algorithm  

The operating system shifts the reference bit for each page into 
the high-order or of its 8-bit byte, shifting the other bits right 1 bit, 
discarding the low-order bit. 

 
These 8-bit shift registers contain the history of page use for the 

last eight time periods. If the shift register contains 00000000, then the 
page has not been used for eight time periods; a page that is used at least 
once each period would have a shift register value of 11111111. 

 
8.3.4.2 Second-Chance Algorithm  

The basic algorithm of second-chance replacement is a FIFO 
replacement algorithm. When a page gets a second chance, its reference 
bit is cleared and its arrival e is reset to the current time. 

 
 
 

8.3.4.3 Enhanced Second-Chance Algorithm  
The second-chance algorithm described above can be enhanced 

by considering troth the reference bit and the modify bit as an ordered 
pair. 

 
1. (0,0) neither recently used nor modified best page to replace. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 84 
 

 
 

 (0,1) not recently used but modified not quite as good, because the 
page will need to be written out before replacement.  

 (1,0) recently used but clean probably will be used again soon.  
 (1,1) recently used and modified probably will be used again, and 

write out will be needed before replacing it  
 

8.4 COUNTING ALGORITHMS   
 

There are many other algorithms that can be used for page replacement. 
 

 LFU Algorithm: The least frequently used (LFU) page-replacement 
algorithm requires that the page with the smallest count be replaced. 
This algorithm suffers from the situation in which a page is used heavily 
during the initial phase of a process, but then is never used again. 

 
 MFU Algorithm: The most frequently used (MFU) page-
replacement algorithm is based on the argument that the page with the 
smallest count was probably just brought in and has yet to be used.  

 
8.5 PAGE BUFFERING ALGORITHM  

 
 

When a page fault occurs, a victim frame is chosen as before. 
However, the desired page is read into a free frame from the pool before 
the victim is written out. This procedure allows the process to restart as 
soon as possible, without waiting for the victim page to be written out. 
When the victim is later written out, its frame is added to the free-frame 
pool. 

 
When the FIFO replacement algorithm mistakenly replaces a 

page mistakenly replaces a page that is still in active use, that page is 
quickly retrieved from the free-frame buffer, and no I/O is necessary. 
The free-frame buffer provides protection against the relatively poor, but 
simple, FIFO replacement algorithm.  

 
8.6 SUMMARY   

 
It is desirable to be able to execute a process whose logical 

address space larger than the available physical address space. Virtual 
memory is a technique that enables us to map a logical 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 85 
 

 
 

address space onto a smaller physical memory. Virtual memory allows 
us to run extremely large processes and to raise the degree of 
multiprogramming, increasing CPU utilization. Virtual memory also 
enables us to use an efficient type of process creation known as copy-
on-write, where in parent and child processes share actual pages of 
memory. 

 
Virtual memory is commonly implemented by demand paging. 

pure demand paging never brings in a page until that page is referenced. 
The first reference causes page fault to the operating system. If total 
memory requirements exceed the capacity of physical memory, then it 
may be necessary to replace pages from memory to free frames for new 
pages. Various page replacement algorithm are used. 

 
In addition to a page replacement algorithm, a frame allocation 

policy is needed. Allocation can be fixed, suggesting local page 
replacement, or dynamic, suggesting global replacement.  

 
8.7 MODEL QUESTION   

 
Q.1 Define and explain Virtual Memory?  
Q.2 Explain advantages and disadvantages Demand Paging  
Q.3 Define and explain Performance of demand paging?  
Q.4 Describe Page Replacement Algorithms?  
Q.5 Explain various Allocation Algorithms? 

 
 
 

����� 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 86 
 

 
 

9 
 
 

I/O HARDWARE 
 

Unit Structure 
 

9.0 Objectives 
9.1 Principal of I/O Hardware 
9.2 Polling 
9.3 I/O Devices 
9.4 Direct Memory Access 
9.5 Device Controllers 
9.6 Summary 
9.7 Model Question 
  
9.0 OBJECTIVE 

 
Explore the structure of an operating system’s I/O 
subsystem.  

Discuss the principles of I/O hardware and its complexity.  
 
 

9.1 PRINCIPAL OF I/O HARDWARE   
 

Computers operate a great many kinds of devices. General types 
include storage devices (disks, tapes), transmission devices 
(network cards, modems), and human-interface devices (screen, 
keyboard, mouse). 

 
A device communicates with a computer system by sending 
signals over a cable or even through the air. The device 
communicates with the machine via a connection point termed a 
port (for example, a serial port). If one or more devices use a 
common set of wires, the connection is called a bus. 

 
When device A has a cable that plugs into device B, and device 
B has a cable that plugs into device C, and device C plugs into a 
port on the computer, this arrangement is called a daisy chain. It 
usually operates as a bus. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 87 
 

 
 

A controller is a collection of electronics that can operate a port, 
a bus, or a device. A serial-port controller is an example of a 
simple device controller. It is a single chip in the computer that 
controls the signals on the wires of a serial port. 

 
The SCSI bus controller is often implemented as a separate 
circuit board (a host adapter) that plugs into the computer. It 
typically contains a processor, microcode, and some private 
memory to enable it to process the SCSI protocol messages. 
Some devices have their own built-in controllers. 

 
An I/O port typically consists of four registers, called the status, 
control, data-in, and data-out registers. The status register 
contains bits that can be read by the host. These bits indicate 
states such as whether the current command has completed, 
whether a byte is available to be read from the data-in register, 
and whether there has been a device error. The control register 
can be written by the host to start a command or to change the 
mode of a device. For instance, a certain bit in the control 
register of a serial port chooses between full-duplex and half-
duplex communication, another enables parity checking, a third 
bit sets the word length to 7 or 8 bits, and other bits select one of 
the speeds supported by the serial port. 

 
The data-in register is read by the host to get input, and the data 
out register is written by the host to send output. The data 
registers are typically 1 to 4 bytes. Some controllers have FIFO 
chips that can hold several bytes of input or output data to 
expand the capacity of the controller beyond the size of the data 
register. A FIFO chip can hold a small burst of data until the 
device or host is able to receive those data.   

 
9.2 POLLING  

 
Incomplete protocol for interaction between the host and a 
controller can be intricate, but the basic handshaking notion is 
simple. The controller indicates its state through the busy bit in 
the status register. (Recall that to set a bit means to write a 1 into 
the bit, and to clear a bit means to write a 0 into it.) 

 
 
 

The controller sets the busy bit when it is busy working, and 
clears  the  busy  bit  when  it  is  ready  to  accept  the  next 

command. The host signals its wishes via the command- 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 88 
 

 
 

ready bit in the command register. The host sets the command-
ready bit when a command is available for the controller to 
execute. 

 
For this example, the host writes output through a port, 
coordinating with the controller by handshaking as follows. 

 
 The host repeatedly reads the busy bit until that bit becomes 

clear.  
 The host sets the write bit in the command register and writes a 

byte into the data-out register.  
 The host sets the command-ready bit.  
 When the controller notices that the command-ready bit is set, it 

sets the Busy.  
 The controller reads the command register and sees the write 

command.  
 It reads the data-out register to get the byte, and does the I/O to 

the device.  
 The controller clears the command-ready bit, clears the error bit 

in the status register to indicate that the device I/O succeeded, 
and clears the busy bit to indicate that it is finished. 

 
 

The host is busy-waiting or polling: It is in a loop, reading the 
status register over and over until the busy bit becomes clear. If 
the controller and device are fast, this method is a reasonable 
one. But if the wait may be long, the host should probably switch 
to another task  

 
9.3 I/O DEVICES  

 
 

Categories of I/O Devices  
 Human readable  
 machine readable  
 Communication  
 Human Readable is suitable for communicating with the 

computer user. Examples are printers, video display terminals, 
keyboard etc.  

 Machine Readable is suitable for communicating with electronic 
equipment. Examples are disk and tape drives, sensors, 
controllers and actuators. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 89 
 

 
 

 Communication is suitable for communicating with remote 
devices. Examples are digital line drivers and modems.  

Differences between I/O Devices  
 Data rate : there may be differences of several orders of 

magnitude between the data transfer rates. 
 Application: Different devices have different use in the system. 
 Complexity of Control: A disk is much more complex whereas 

printer requires simple control interface. 
 Unit of transfer: Data may be transferred as a stream of bytes or 

characters or in larger blocks. 
 Data representation: Different data encoding schemes are used 

for different devices. 
 Error Conditions: The nature of errors differs widely from one 

device to another.  
 

9.4 DIRECT MEMORY ACCESS  
 
 

A special control unit may be provided to allow transfer of a 
block of data directly between an external device and the main 
memory, without continuous intervention by the processor. This 
approach is called Direct Memory Access(DMA). 

 
DMA can be used with either polling or interrupt software. DMA 
is particularly useful on devices like disks, where many bytes of 
information can be transferred in single I/O operations. When 
used in conjunction with an interrupt, the CPU is notified only 
after the entire block of data has been transferred. For each byte 
or word transferred, it must provide the memory address and all 
the bus signals that control the data transfer. 

 
Interaction with a device controller is managed through a device 
driver. 

 
Device drivers are part of the operating system, but not 
necessarily part of the OS kernel. The operating system provides 
a simplified view of the device to user applications (e.g., 
character devices vs. block devices in UNIX). In some operating 
systems (e.g., Linux), devices are also accessible through the 
/dev file system. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 90 
 

 
 

In some cases, the operating system buffers data that are 
transferred between a device and a user space program (disk 
cache, network buffer). This usually increases performance, but 
not always.  



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 91 
 

  
 

9.5 DEVICE CONTROLLERS   
A computer system contains a multitude of I/O devices and their 

respective controllers: 
 network card  
 graphics adapter  
 disk controller  
 DVD-ROM controller  
 serial port  
 USB  
 sound card  

 
 

9.6 SUMMARY  
 
 

The basic hardware elements involved in I/O buses, device 
controllers, and the device themselves. The work of moving data 
between devices and main memory is performed by the CPU as 
programmed I/O or is offloaded to a DMA controller. The kernel 
module that controls a device driver. 

 
The system call interface provided to applications is designed to 

handle several basic categories of hardware, including block devices, 
character devices, memory mapped files, network sockets, and 
programmed interval timers. The system calls usually block the 
processes that issue them, but non blocking and asynchronous calls are 
used by the kernel itself and by applications that must not sleep while 
waiting for an I/O operation to complete. 

 
The kernel’s I/O subsystem provides numerous services. Among 

these are I/O scheduling, buffering, caching. Spooling, device 
reservation, and error handling.  

 
9.7 MODEL QUESTION  

 
 

Q.1 Define and Explain Direct Memory Access?  
Q.2 Explain device controllers?  
Q.3 Explain concept of I/O Hardware?  
Q.4 Explain concept of Polling?  
Q.5 Explain I/O devices? 

 
 

����� 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 92 
 

 
 
 

10 
 

I/O SOFTWARE 
 

Unit Structure 
 
 

10.0 Objectives  
10.1 Principle of I/O Software  

10.1.1  Interrupts  
10.2.2  Application I/O Interfaced  
10.1.3  Clocks and Timers  
10.1.4  Blocking and Non-blocking I/O  

10.2 Kernel I/O Subsystem  
10.2.1  Scheduling  
10.2.2  Buffering  
10.2.3  Caching  
10.2.3  Spooling and Device Reservation  
10.2.4  Error Handling  

10.3 Device Drivers  
10.4 Summary  
10.5 Model Question   

 
10.0 OBJECTIVE   

 
Explore the structure of an operating system’s I/O subsystem. 

 
Discuss the principles of I/O software.  
Provide details of the performance aspects of I/O software.   

 
10.1 PRINCIPLES OF I/O SOFTWARE  

 
 

10.1.1 Interrupts 
 

The CPU hardware has a wire called the interrupt request line 
that the CPU senses after executing every instruction. When  the  

CPU  detects  that  a  controller  has  asserted  a signal on the 
interrupt request line, the CPU saves a small amount of state, 

such as the current value of the instruction 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 93 
 

 
 

pointer, and jumps to the interrupt-handler routine at a fixed 
address in memory.  
The interrupt handler determines the cause of the interrupt, 
performs the necessary processing, and executes a return from 
interrupt instruction to return the CPU to the execution state prior 
to the interrupt. We say that the device controller raises an 
interrupt by asserting a signal on the interrupt request line, the 
CPU catches the interrupt and dispatches to the interrupt handler, 
and the handler clears the interrupt by servicing the device. 
Figure 12.3 summarizes the interrupt-driven I/O cycle.  
This basic interrupt mechanism enables the CPU to respond to an 
asynchronous event, such as a device controller becoming ready 
for service. In a modern operating system, we need more 
sophisticated interrupt-handling features.  
First, we need the ability to defer interrupt handling during 
critical processing. Second, we need an efficient way to dispatch 
to the proper interrupt handler for a device, without first polling 
all the devices to see which one raised the interrupt. Third, we 
need multilevel interrupts, so that the operating system can 
distinguish between high- and low-priority interrupts, and can 
respond with the appropriate degree of urgency.  
In modern computer hardware, these three features are provided 
by the CPU and by the interrupt-controller hardware. 

 
CPUs have two interrupt request lines. One is the non-maskable 
interrupt, which is reserved for events such as unrecoverable 
memory errors. The second interrupt line is maskable. It can be 
turned off by the CPU before the execution of critical instruction 
sequences that must not be interrupted. The maskable interrupt is 
used by device controllers to request service.  
This address is an offset in a table called the interrupt vector. 
This vector contains the memory addresses of .specialized 
interrupt handlers. The purpose of a vectored interrupt 
mechanism is to reduce the need for a single interrupt handler to 
search all possible sources of interrupts to determine which one 
needs service.  
The interrupt mechanism also implements a system of interrupt 
priority levels. This mechanism enables the CPU to defer the 
handling of low-priority interrupts without masking off all 
interrupts, and makes it possible for a high-priority interrupt to 
preempt the execution of a low-priority interrupt. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 94 
 

 
 

The interrupt mechanism is also used to handle a wide variety of 
exceptions, such as dividing by zero, accessing a protected or 
nonexistent memory address, or attempting to execute a 
privileged instruction from user mode.  
A system call is a function that is called by an application to 
invoke a kernel service. The system call checks the arguments 
given by the application, builds a data structure to convey the 
arguments to the kernel, and then executes a special instruction 
called a software interrupt, or a trap.  
Interrupts can also be used to manage the flow of control within 
the kernel. If the disks are to be used efficiently, we need to start 
the next I/O as soon as the previous one completes. 
Consequently, the kernel code that completes a disk read is 
implemented by a pair of interrupt handlers. The high-priority 
handler records the I/O status, clears the device interrupt, starts 
the next pending I/O, and raises a low-priority interrupt to 
complete the work. The corresponding handler completes the 
user level I/O by copying data from kernel buffers to the 
application space and then by calling the scheduler to place the 
application on the ready queue. 

 
10.1.2 Application I/O Interfaced  

Structuring techniques and interfaces for the operating system 
enable I/O devices to be treated in a standard, uniform way. For 
instance, how an application can open a file on a disk without 
knowing what kind of disk it is, and how new disks and other 
devices can be added to a computer without the operating system 
being disrupted.  
The actual differences are encapsulated in ken modules called 
device drivers mat internally are custom tailored to each device 
but that export one of the standard interfaces.  
The purpose of the device-driver layer is to hide the differences 
among device controllers from the I/O subsystem of the kernel, 
much as the I/O system calls. 

 
Character-stream or block. A character-stream device transfers bytes 
one by one, whereas a block device transfers a block of bytes as a unit. 

 
Sequential or random-access. A sequential device transfers data in a 
fixed order that is determined by the device, whereas the user of a 
random-access device can instruct the device to seek to any of the 
available data storage locations. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 95 
 

 
 

Synchronous or asynchronous. A synchronous device is one that 
performs data transfers with predictable response times. An 
asynchronous device exhibits irregular or unpredictable response times. 

 
Sharable or dedicated. A sharable device can be used concurrently by 
several processes or threads; a dedicated device cannot. 

 
 

Speed of operation. Device speeds range from a few bytes per second 
to a few gigabytes per second. 

 
Read-write, read only, or write only. Some devices perform both input 
and output, but others support only one data direction. For the purpose 
of application access, many of these differences are hidden by the 
operating system, and the devices are grouped into a few conventional 
types.  

Operating systems also provide special system calls to access a 
few additional devices, such as a time-of-day clock and a timer. 
The performance and addressing characteristics of network I/O 
differ significantly from those of disk I/O, most operating 
systems provide a network I/O interface that is different from the 
read-write-seek interface used for disks. 

 
10.1.3 Clocks and Timers 

 
Most computers have hardware clocks and timers that provide 
three basic functions:  

 Give the current time  
 Give the elapsed time  
 Set a timer to trigger operation X at time T 

 
These functions are used heavily by the operating system, and 
also by time sensitive applications. The hardware to measure 
elapsed time and to trigger operations is called a programmable 
interval timer. 

 
 

10.1.4 Blocking and Non-blocking I/O 
 

One remaining aspect of the system-call interface relates to the 
choice between blocking I/O and non-blocking (asynchronous) 
I/O. When an application calls a blocking system call, the 
execution of the application is suspended. The application is 
moved from the operating system's run queue to a wait queue. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 96 
 

 
 

After the system call completes, the application is moved back to 
the run queue, where it is eligible to resume execution, at which 
time it will receive the values returned by the system call.  

Some user-level processes need non-blocking I/O.   
 

10.2 KERNEL I/O SUBSYSTEM  
 
 

Kernels provide many services related to I/O. The services that 
we describe are I/O scheduling, buffering caching, spooling, 
device reservation, and error handling. 

 
10.2.1 Scheduling  

To schedule a set of I/O requests means to determine a good 
order in which to execute them. The order in which applications 
issue system calls rarely is the best choice. Scheduling can 
improve overall system performance, can share device access 
fairly among processes, and can reduce the average waiting time 
for I/O to complete. Operating-system developers implement 
scheduling by maintaining a queue of requests for each device. 
When an application issues a blocking I/O system call, the 
request is placed on the queue for that device. 

 
The I/O scheduler rearranges the order of the queue to improve 
the overall system efficiency and the average response time 
experienced by applications. 

 
10.2.2 Buffering  

A buffer is a memory area that stores data while they are 
transferred between two devices or between a device arid an 
application. Buffering is done for three reasons.  
One reason is to cope with a speed mismatch between the 
producer and consumer of a data stream.  
Second buffer while the first buffer is written to disk. A second 
use of buffering is to adapt between devices that have different 
data transfer sizes.  
A third use of buffering is to support copy semantics for 
application I/O. 

 
10.2.3 Caching  

A cache is region of fast memory that holds copies of data. 
Access to the cached copy is more efficient than access to the 
original. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 97 
 

 
 

Caching and buffering are two distinct functions, but sometimes 
a region of memory can be used for both purposes. 

 
10.2.4 Spooling and Device Reservation  

A spool is a buffer that holds output for a device, such as a 
printer, that cannot accept interleaved data streams. The spooling 
system copies the queued spool files to the printer one at a time. 

 
In some operating systems, spooling is managed by a system 
daemon process. In other operating systems, it is handled by an 
in kernel thread. 

 
10.2.5 Error Handling  

An operating system that uses protected memory can guard 
against many kinds of hardware and application errors.  

 
10.3 DEVICE DRIVERS   

 
In computing, a device driver or software driver is a computer 
program allowing higher-level computer programs to interact 
with a hardware device.  
A driver typically communicates with the device through the 
computer bus or communications subsystem to which the 
hardware connects. When a calling program invokes a routine in 
the driver, the driver issues commands to the device.  
Once the device sends data back to the driver, the driver may 
invoke routines in the original calling program. Drivers are 
hardware-dependent and operating-system-specific.  

They usually provide the interrupt handling required for any  
necessary asynchronous time-dependent hardware interface.  

 
 
 

10.4 SUMMARY   
 

The system call interface provided to applications is designed to 
handle several basic categories of hardware, including block devices, 
character devices, memory mapped files, network sockets, and 
programmed interval timers. The system calls usually block the 
processes that issue them, but non blocking and 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 98 
 

 
 

asynchronous calls are used by the kernel itself and by applications that 
must not sleep while waiting for an I/O operation to complete. 
The kernel’s I/O subsystem provides numerous services. Among these 
are I/O scheduling, buffering, caching. Spooling, device reservation, and 
error handling. I/O system calls are costly in terms of CPU consumption 
because of the many layers of software between a physical device and 
an application.  

 
10.5 MODEL QUESTION   

 
Q.1 Explain application of I/O interface?  
Q.2 Describe blocking and non blocking I/O?  
Q.3 Explain following concepts  

 Clock and Timers  
 Device Drivers Q.4 

Write a short notes on 
 Scheduling  
 Buffering  
 Error Handling  

Q.5 Explain spooling mechanism?  
Q.6 Explain Caching in details? 

 
 
 

����� 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 99 
 

 
 

11 
 
 

SECONDARY STORAGE MANAGEMENT 
 

Unit Structure 
 

11.0 Objectives 
11.1 Disk Structure 
11.2 Disk Performance Parameters 
11.3 Disk Scheduling 
11.4 Disk Management 
11.5 Swap Space Management 
11.6 Stable Storage Implementation 
11.7 Disk Reliability 
11.8 Summary 
11.9 Model Question  

 
11.0 OBJECTIVE  

 
Describe the physical structure of secondary and tertiary 
storage devices and the resulting effects on the uses of the 
devices.  
Explain the performance characteristics of mass-storage 
devices.  
Discuss operating-system services provided for mass 
storage.  

 
11.1 DISK STRUCTURE   

 
Disk provide bulk of secondary storage of computer system. The 
disk can be considered the one I/O device that is common to each 
and every computer. Disks come in many size and speeds, and 
information may be stored optically or magnetically. Magnetic 
tape was used as an early secondary storage medium, but the 
access time is much slower than for disks. For backup, tapes are 
currently used.  

Modern disk drives are addressed as large one dimensional 
arrays  of  logical  blocks,  where  the  logical  block  is  the 
smallest  unit  of  transfer.  The  actual  details  of  disk  I/O 

operation depends on the computer system, the operating 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 100 
 

 
 

system and the nature of the I/O channel and disk controller 
hardware.  
The basic unit of information storage is a sector. The sectors are 
stored on a flat, circular, media disk. This media spins close to 
one or more read/write heads. The heads can move from the 
inner portion of the disk to the outer portion.  
When the disk drive is operating, the disk is rotating at constant 
speed. To read or write, the head must be positioned at the 
desired track and at the beginning of the desired sector on that 
track. Track selection involves moving the head in a movable 
head system or electronically selecting one head on a fixed head 
system. These characteristics are common to floppy disks, hard 
disks, CD-ROM and DVD.   

 
 

11.2 DISK PERFORMANCE PARAMETERS   
 

When the disk drive is operating, the disk is rotating at constant 
speed. To read or write, the head must be positioned at the 
desired track and at the beginning of the desired sector on that 
track.  
Track selection involves moving the head in a movable-head 
system or electronically selecting one head on a fixed-head 
system. On a movable-head system, the time it takes to position 
the head at the track is known as seek time.  
When once the track is selected, the disk controller waits until 
the appropriate sector rotates to line up with the head. The time it 
takes for the beginning of the sector to reach the head is known 
as rotational delay, or rotational latency. The sum of the seek 
time, if any, and the rotational delay equals the access time, 
which is the time it takes to get into position to read or write.  
Once the head is in position, the read or write operation is then 
performed as the sector moves under the head; this is the data 
transfer portion of the operation; the time required for the 
transfer is the transfer time.  
Seek Time Seek time is the time required to move the disk arm 
to the required track. It turns out that this is a difficult quantity to 
pin down. The seek time consists of two key components: the 
initial startup time and the time taken to traverse the tracks that 
have to be crossed once the access arm is up to speed.  

Ts = m x n + s 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 101 
 

 
 

Rotational Delay Disks, other than floppy disks, rotate at speeds 
ranging from 3600 rpm up to, as of this writing, 15,000 rpm; at 
this latter speed, there is one revolution per 4 ms. Thus, on the 
average, the rotational delay will be 2 ms. Floppy disks typically 
rotate at between 300 and 600 rpm. Thus the average delay will 
be between 100 and 50 ms.  
Transfer Time The transfer time to or from the disk depends on 
the rotation speed of the disk in the following fashion: 

T= b/rN  
where  
T = transfer time  
b = number of bytes to be transferred  
N = number of bytes on a track  
r = rotation speed, in revolutions per second  

Thus the total average access time can be expressed as Ta = 
Ts +  
where Ts is the average seek time.   

 
11.3 DISK SCHEDULING  

 
 

The amount of head needed to satisfy a series of I/O request can 
affect the performance. If desired disk drive and controller are 
available, the request can be serviced immediately. If a device or 
controller is busy, any new requests for service will be placed on 
the queue of pending requests for that drive. When one request is 
completed, the operating system chooses which pending request 
to service next.  

Different types of scheduling algorithms are as follows.  
 First Come, First Served scheduling algorithm(FCFS).  
 Shortest Seek Time First (SSTF) algorithm  
 SCAN algorithm  
 Circular SCAN (C-SCAN) algorithm  
 Look Scheduling Algorithm 

 
11.3.1 First Come, First Served scheduling algorithm(FCFS).  

The  simplest  form  of  scheduling  is  first-in-first-out  (FIFO) 
scheduling,  which  processes  items  from  the  queue  in 

sequential order. This strategy has the advantage of being fair, 
because every request is honored and the requests are honored in 
the order received. With FIFO, if there are only a few  processes  

that  require  access  and  if  many  of  the 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 102 
 

 
 

requests are to clustered file sectors, then we can hope for good 
performance.  
Priority With a system based on priority (PRI), the control of the 
scheduling is outside the control of disk management software.  
Last In First Out ln transaction processing systems, giving the 
device to the most recent user should result. In little or no arm 
movement for moving through a sequential file. Taking 
advantage of this locality improves throughput and reduces 
queue length. 

 
11.3.2 Shortest Seek Time First (SSTF) algorithm 

 
The SSTF policy is to select the disk I/O request the requires the 
least movement of the disk arm from its current position. Scan 
With the exception of FIFO, all of the policies described so far 
can leave some request unfulfilled until the entire queue is 
emptied. That is, there may always be new requests arriving that 
will be chosen before an existing request. 

 
The choice should provide better performance than FCFS 
algorithm.  
Under heavy load, SSTF can prevent distant request from ever 
being serviced. This phenomenon is known as starvation. SSTF 
scheduling is essentially a from of shortest job first scheduling. 
SSTF scheduling algorithm are not very popular because of two 
reasons.  

 Starvation possibly exists.  
 it increases higher overheads. 

 
11.3.3 SCAN scheduling algorithm  

The scan algorithm has the head start at track 0 and move 
towards the highest numbered track, servicing all requests for a 
track as it passes the track. The service direction is then reserved 
and the scan proceeds in the opposite direction, again picking up 
all requests in order.  
SCAN algorithm is guaranteed to service every request in one 
complete pass through the disk. SCAN algorithm behaves almost 
identically with the SSTF algorithm. The SCAN algorithm is 
sometimes called elevator algorithm. 

 
11.3.4 C SCAN Scheduling Algorithm 

 
The C-SCAN policy restricts scanning to one direction only. 

Thus, when the last track has been visited in one direction, 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 103 
 

 
 

the arm is returned to the opposite end of the disk and the scan 
begins again.  
This reduces the maximum delay experienced by new requests. 

 
11.3.5 LOOK Scheduling Algorithm  

Start the head moving in one direction. Satisfy the request for the 
closest track in that direction when there is no more request in 
the direction, the head is traveling, reverse direction and repeat. 
This algorithm is similar to innermost and outermost track on 
each circuit.  

 
11.4 DISK MANAGEMENT  

 
Operating system is responsible for disk management.  

Following are some activities discussed. 
 

11.4.1 Disk Formatting  
Disk formatting is of two types.  
 Physical formatting or low level formatting.  
 Logical Formatting 

 
Physical Formatting 

 
Disk must be formatted before storing data.  

Disk must be divided into sectors that the disk controllers can 
read/write.  
Low level formatting files the disk with a special data structure 
for each sector.  
Data structure consists of three fields: header, data area and 
trailer.  
Header and trailer contain information used by the disk 
controller.  
Sector number and Error Correcting Codes (ECC) contained in 
the header and trailer.  

For writing data to the sector – ECC is updated. 
 

For reading data from the sector – ECC is recalculated. 

Low level formatting is done at factory. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 104 
 

 
 

Logical Formatting  
After disk is partitioned, logical formatting used.  

Operating system stores the initial file system data structures 
onto the disk. 

 
11.4.2 Boot Block 

 
When a computer system is powered up or rebooted, a program 
in read only memory executes.  

Diagnostic check is done first. 
 

Stage 0 boot program is executed. 
 

Boot program reads the first sector from the boot device and 
contains a stage-1 boot program.  

May be boot sector will not contain a boot program. 
 

PC booting from hard disk, the boot sector also contains a 
partition table.  
The code in the boot ROM instructs the disk controller to read 
the boot blocks into memory and then starts executing that code.  
Full boot strap program is more sophisticated than the bootstrap 
loader in the boot ROM.  

 
11.5 SWAP SPACE MANAGEMENT  

 
Swap space management is low level task of the operating 

system. The main goal for the design and implementation of swap space 
is to provide the best throughput for the virtual memory system. 

 
11.5.1 Swap-Space Use  

The operating system needs to release sufficient main memory to 
bring in a process that is ready to execute. Operating system uses this 
swap space in various way. Paging systems may simply store pages that 
have been pushed out of main memory. Unix operating system allows 
the use of multiple swap space are usually put on separate disks, so the 
load placed on the I/O system by paging and swapping can be spread 
over the systems I/O devices. 

 
11.5.2 Swap Space Location  

Swap space can reside in two places:  
 Separate disk partition  
 Normal file System 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 105 
 

 
 

If the swap space is simply a large file within the file system, 
normal file system routines can be used to create it, name it and 
allocate its space. This is easy to implement but also inefficient. 
External fragmentation can greatly increase swapping times. 
Catching is used to improve the system performance. Block of 
information is cached in the physical memory, and by using 
special tools to allocate physically continuous blocks for the 
swap file.  
Swap space can be created in a separate disk partition. No file 
system or directory structure is placed on this space. A separate 
swap space storage manager is used to allocate and deallocate the 
blocks. This manager uses algorithms optimized for speed. 
Internal fragmentation may increase. Some operating systems are 
flexible and can swap both in raw partitions and in file system 
space.  

 
11.6 STABLE STORAGE IMPLEMENTATION   

 
The write ahead log, which required the availability of stable 
storage.  
By definition, information residing in stable storage is never lost.  
To implement such storage, we need to replicate the required 
information on multiple storage devices (usually disks) with 
independent failure modes.  
We also need to coordinate the writing of updates in a way that 
guarantees that a failure during an update will not leave all the 
copies in a damaged state and that, when we are recovering from 
failure, we can force all copies to a consistent and correct value, 
even if another failure occurs during the recovery.  

 
11.7 DISK RELIABILITY  

 
 

Good performance means high speed, another important aspect 
of performance is reliability.  
A fixed disk drive is likely to be more reliable than a removable 
disk or tape drive.  
An optical cartridge is likely to be more reliable than a magnetic 
disk or tape.  
A head crash in a fixed hard disk generally destroys the data, 
whereas the failure of a tape drive or optical disk drive often 
leaves the data cartridge unharmed. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 106 
 

  
 

11.8 SUMMARY   
 

Disk drives are the major secondary storage I/O devices on most 
computers. Most secondary devices are either magnetic disks or 
magnetic tapes. Modern disk drives are structured as large one 
dimensional arrays of logical disk blocks. Disk scheduling algorithms 
can improve the effective bandwidth, the average response time, and the 
variance response time. Algorithms such as SSTF, SCAN, C-SCAN. 
LOOK, and CLOOK are designed to make such improvements through 
strategies for disk queue ordering. 

 
Performance can be harmed by external fragmentation. The 

operating system manages block. First, a disk must be low level 
formatted to create the sectors on the raw hardware, new disks usually 
come preformatted. Then, disk is partitioned, file systems are created, 
and boot blocks are allocated to store the system bootstrap program. 
Finally when a block is corrupted, the system must have a way to lock 
out that block or to replace it logically with a space. 

 
 
 

Because of efficient swap space is a key to good performance, 
systems usually bypass the file system and use raw disk access for 
paging I/O. Some systems dedicate a raw disk partition to swap space, 
and others use a file within the file system instead.  

 
11.9 MODEL QUESTION   

 
Q.1 Explain disk structure?  
Q.2 Explain following scheduling algorithms:  

 First Come, First Served scheduling algorithm(FCFS).  
 Shortest Seek Time First (SSTF) algorithm  
 SCAN algorithm  
 Circular SCAN (C-SCAN) algorithm  
 Look Scheduling Algorithm  

Q.3 Explain swap space management?  
Q. 4 Explain Disk management and types?  
Q.5 Describe disk reliability? 

 
 

����� 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 107 
 

 
 

12 
 

FILE SYSTEMS 
 

Unit Structure 
 

12.0 Objectives  
12.1 File Concept  
12.2 File Support  
12.3 Access Methods  
12.4 Directory Systems  
12.5 File Protection  
12.6 Free Space Management  
12.7 Summary  
12.8 Model Question   

 
12.0 OBJECTIVE   

 
To explain the function of file systems.  
To describe the interfaces to the file systems.  

To discuss file system design tradeoffs, including access 
methods, file sharing, file locking, and directory structure.  

To explore file system protection.  
 

12.1 FILE CONCEPT  
 
 

 A file is a collection of similar records. The file is treated as a single 
entity by users and applications and may be referred by name. Files 
have unique file names and may be created and deleted. Restrictions 
on access control usually apply at the file level.  

 A file is a container for a collection of information. The file manager 
provides a protection mechanism to allow users administrator how 
processes executing on behalf of different users can access the 
information in a file. File protection is a fundamental property of 
files because it allows different people to store their information on a 
shared computer.  

 File represents programs and data. Data files may be numeric, 
alphabetic, binary or alpha numeric. Files may be free form, such as 
text files. In general, file is sequence of bits, bytes, lines or records. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 108 
 

 
 

 A file has a certain defined structure according to its type. 1 
Text File 
2 Source File  
3 Executable File  
4 Object File   

 
12.2 FILE STRUCTURE  

 
Four terms are use for files  
 Field  
 Record  
 Database 

 
A field is the basic element of data. An individual field contains 

a single value. A record is a collection of related fields that can be 
treated as a unit by some  
application program. 

 
A file is a collection of similar records. The file is treated as a 

singly entity by users and applications and may be referenced by name. 
Files have file names and maybe created and deleted. Access control 
restrictions usually apply at the file level. 

 
A database is a collection of related data. Database is designed 

for use by a number of different applications. A database may contain 
all of the information related to an organization or project, such as a 
business or a scientific study. The database itself consists of one or more 
types of files. Usually, there is a separate  
database management system that is independent of the operating 
system.  

 
12.3 FILE ATTRIBUTES  

 
 

File attributes vary from one operating system to another. 
The common attributes are,  

Name – only information kept in human-readable form. 
Identifier – unique tag (number) identifies file within file  
system  
Type – needed for systems that support different types 
Location – pointer to file location on device 

Size – current file size 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 109 
 

 
 

Protection – controls who can do reading, writing, 
executing  
Time, date, and user identification – data for 
protection, security, and usage monitoring  
Information about files are kept in the directory structure, 
which is maintained on the disk  

 
12.4 FILE OPERATIONS  

 
Any file system provides not only a means to store data 

organized as files, but a collection of functions that can be performed on 
files. Typical operations include the following: 

 
Create: A new file is defined and positioned within the structure of 
files.  
Delete: A file is removed from the file structure and destroyed.  
Open: An existing file is declared to be "opened" by a process, allowing 
the process to perform functions on the file.  
Close: The file is closed with respect to a process, so that the process no 
longer may perform functions on the file, until the process opens the file 
again.  
Read: A process reads all or a portion of the data in a file.  
Write: A process updates a file, either by adding new data that expands 
the size of the file or by changing the values of existing data items in the 
file. 

 
File Types – Name, Extension  

A common technique for implementing file types is to include 
the type as part of the file name. The name is split into two parts 
: a name and an extension. Following table gives the file type 
with usual extension and function.  

 
File Type Usual Extension Function 
Executable exe, com, bin Read to run machine 

  language program. 
Object obj, o Compiled, machine 

  language, not linked 
Source Code c, cc, java, pas asm, a Source code in 

  various language 
Text txt, doc Textual data, 

  documents 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 110 
 

  
 

12.5 FILE MANAGEMENT SYSTEMS   
 

A file management system is that set of system software that 
provides services to users and applications in the use of files. following 
objectives for a file management system: 

 
 To meet the data management needs and requirements of the user 
which include storage of data and the ability to perform the 
aforementioned operations.  
 To guarantee, to the extent possible, that the data in the file are valid.  
 To optimize performance, both from the system point of view in terms 
of overall throughput.  
 To provide I/O support for a variety of storage device types.  
 To minimize or eliminate the potential for lost or destroyed data.  
 To provide a standardized set of I/O interface routines to use 
processes. 

 
TO provide I/O support for multiple users, in the case of 

multiple-user systems File System Architecture. At the lowest level, 
device drivers communicate directly with peripheral devices or their 
controllers or channels. A device driver is responsible for starting I/O 
operations on a device and processing the completion of an I/O request. 
For file operations, the typical devices controlled are disk and tape 
drives. Device drivers are usually considered to be part of the operating 
system. 

 
The I/O control, consists of device drivers and interrupt handlers 

to transfer information between the memory and the disk system. A 
device driver can be thought of as a translator. 

 
The basic file system needs only to issue generic commands to 

the appropriate device driver to read and write physical blocks on the 
disk. 

 
The file-organization module knows about files and their logical 

blocks, as well as physical blocks. By knowing the type of file allocation 
used and the location of the file, the file-organization module can 
translate logical block addresses to physical block addresses for the 
basic file system to transfer. Each file's logical blocks are numbered 
from 0 (or 1) through N, whereas the physical blocks containing the data 
usually do not match the logical numbers, so a translation is needed to 
locate each block. The file- 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 111 
 

 
 

organization module also includes the free-space manager, which tracks 
unallocated and provides these blocks to the file organization module 
when requested. 

 
The logical file system uses the directory structure to provide the 

file-organization module with the information the latter needs, given a 
symbolic file name. The logical file system is also responsible for 
protection and security. 

 
To create a new file, an application program calls the logical file 

system. The logical file system knows the format of the directory 
structures. To create a new file, it reads the appropriate directory into 
memory, updates it with the new entry, and writes it back to the disk. 

 
Once the file is found the associated information such as size, 

owner, access permissions and data block locations are generally copied 
into a table in memory, referred to as the open-file fable, consisting of 
information about all the currently opened files. 

 
The first reference to a file (normally an open) causes the 

directory structure to be searched and the directory entry for this file to 
be copied into the table of opened files. The index into this table is 
returned to the user program, and all further references are made through 
the index rather than with a symbolic name. The name given to the 
index varies. Unix systems refer to it as a file descriptor, Windows/NT 
as a file handle, and other systems as a file control block. 

 
Consequently, as long as the file is not closed, all file operations 

are done on the open-file table. When the file is closed by all users that 
have opened it, the updated file information is copied back to the disk-
based directory structure. 

 
File-System Mounting  

As a file must be opened before it is used, a file system must be 
mounted before it can be available to processes on the system. 
The mount procedure is straight forward. The stem is given the 
name of the device, and the location within the file structure at 
which to attach the file system (called the mount point). 

 
The  operating  system  verifies  that  the  device  contains  a 

valid file system. It does so by asking the device driver to read 
the device directory and verifying that the directory has the 

expected format. Finally, the operating system notes in 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 112 
 

 
 

its directory structure that a file system is mounted at the 
specified mount point. This scheme enables the operating system 
to traverse its directory structure, switching among file systems 
as appropriate. 

 
Allocation Methods  

The direct-access nature of disks allows us flexibility in the 
implementation of files. Three major methods of allocating disk 
space are in wide use: contiguous, linked and indexed. Each 
method has its advantages and disadvantages. 

 
Contiguous Allocation 

 
The contiguous allocation method requires each file to occupy a 
set of contiguous blocks on the disk. Disk addresses define a 
linear ordering on the disk. Notice that with this ordering 
assuming that only one job is accessing the disk, accessing block 
b + 1 after block b normally requires no head movement.  
When head movement is needed, it is only one track. Thus, the 
number of disk seeks required for accessing contiguously 
allocated files is minimal.  
Contiguous allocation of a file is defined by the disk address and 
length (in block units) of the first block. If the file is n blocks 
long, and starts at location!), then it occupies blocks b, b + 1, b + 
2, ..., b + n – 1. The directory entry for each file indicates the 
address of the starting block and the length of the area allocate 
for this file.  
Accessing a file that has been allocated contiguously is easy. For 
sequential access, the file system remembers the disk address of 
the last block referenced and, when necessary, reads the next 
block. For direct access to block i of a file that starts at block b, 
we can immediately access block b + i. The contiguous disk-
space-allocation problem can be seen to be a particular 
application of the general dynamic storage-allocation First Fit 
and Best Fit are the most common strategies used to select a free 
hole from the set of available holes. Simulations have shown that 
both first-fit and best-fit are more efficient than worst-fit in terms 
of both time and storage utilization. Neither first-fit nor best-fit is 
clearly best in terms of storage utilization, but first-fit is 
generally faster. 

 
These  algorithms  suffer  from  the  problem  of  external 

fragmentation. As files are allocated and deleted, the free disk 
space is broken into little pieces. External fragmentation exists  

whenever  free  space  is  broken  into  chunks.  It 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 113 
 

 
 

becomes a problem when the largest contiguous chunks is 
insufficient for a request; storage is fragmented into a number of 
holes, no one of which is large enough to store the data. 
Depending on the total amount of disk storage and the average 
file size, external fragmentation may be either a minor or a major 
problem.  
To prevent loss of significant amounts of disk space to external 
fragmentation, the user had to run repacking routine that copied 
the entire file system onto another floppy disk or onto a tape. The 
original floppy disk was then freed completely, creating one 
large contiguous free space. The routine then copied the files 
back onto the floppy disk by allocating contiguous space from 
this one large hole. This scheme effectively compacts all free 
space into one contiguous space, solving the fragmentation 
problem. The cost of this compaction is time.  
The time cost is particularly severe for large hard disks that use 
contiguous allocation, where compacting all the space may take 
hours and may be necessary on a weekly basis. During this down 
time, normal system operation generally cannot be permitted, so 
such compaction is avoided at all costs on production machines.  
A major problem is determining how much space is needed for a 
file. When the file is created, the total amount of space it will 
need must be found and allocated.  
The user will normally over estimate the amount of space 
needed, resulting in considerable wasted space. 

 
Linked Allocation 

 
Linked allocation solves all problems of contiguous allocation. 
With link allocation, each file is a linked list disk blocks; the disk 
blocks may be scattered anywhere on the disk. 

 
This pointer is initialized to nil (the end-of-list pointer value) to 
signify an empty file. The size field is also set to 0. A write to the 
file causes a free bio to be found via the free-space management 
system, and this new block is the written to, and is linked to the 
end of the file  
There is no external fragmentation with linked allocation, and 
any free! block on the free-space list can be used to satisfy a 
request. Notice also that there is no need to declare the size of a 
file when that file is created. A file can continue to grow as long 
as there are free blocks. Consequently, it is never necessary to 
compact disk space. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 114 
 

 
 

The major problem is that it can be used effectively for only 
sequential access files. To find the ith block of a file we must 
start at the beginning of that file, and follow the pointers until we 
get to the ith block. Each access to a pointer requires a disk read 
and sometimes a disk seek. Consequently, it is inefficient to 
support a direct-access capability for linked allocation files.  
Linked allocation is the space required for the pointers If a 
pointer requires 4 bytes out of a 512 Byte block then 0.78 percent 
of the disk is being used for pointer, rather than for information.  
The usual solution to this problem is to collect blocks into 
multiples, called clusters, and to allocate the clusters rather than 
blocks. For instance, the file system define a cluster as 4 blocks 
and operate on the disk in only cluster units.  
Pointers then use a much smaller percentage of the file's disk 
space. This method allows the logical-to-physical block mapping 
to remain simple, but improves disk throughput (fewer disk head 
seeks) and decreases the space needed for block allocation and 
free-list management. The cost of this approach an increase in 
internal fragmentation.  
Yet another problem is reliability. Since the files are linked 
together by pointers scattered all over the disk, consider what 
would happen if a pointer— were lost or damaged. Partial 
solutions are to use doubly linked lists or to store the file name 
and relative block number in each block; however, these schemes 
require even more overhead for each file.  
An important variation, on the linked allocation method is the 
use of a file allocation table (FAT). This simple but efficient 
method of disk-space allocation is used by the MS-DOS and 
OS/2 operating systems. A section of disk at the beginning of 
each-partition is set aside to contain the table. The table has one 
entry for each disk block, and is indexed by block number. The 
FAT is used much as is a linked list. The directory entry contains 
the block number of the first block of the file. The table entry 
indexed by that block number then contains the block number of 
the next block in the file. This chain continues until the last 
block, which has a special end-of-file value -as the table entry. 
Unused blocks are indicated by a 0 table value. Allocating a new 
block to a file is a simple matter of finding the first 0-valued 
table entry, and replacing the previous end-of-file value with the 
address of the new block. The 0 is then replaced with the end-
offile value. An illustrative example is the FAT structure of for a 
file consisting of disk blocks 217, 618, and 339. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 115 
 

 
 

Indexed Allocation 
 

Linked allocation solves the external-fragmentation and size-
declaration problems of contiguous allocation. The absence of a 
FAT, linked allocation cannot support efficient direct access, 
since the pointers to the blocks are scattered with the blocks 
themselves all over the disk and need to be retrieved in order 
Indexed allocation solves this problem by bringing all the 
pointers together into one location: the index block. 

 
Each file has its own index block, which is an array of disk-block 
addresses. The ith entry in the index block points to the ith block 
of the file. The directory contains the address of the index block.  
When the file is created, all pointers in the index block are set to 
nil. When the ith block is first written, a block is obtained: from 
the free space manager, and its address- is put in the ith index-
block entry.  
Allocation supports direct access, without suffering from 
external fragmentation because any free block on he disk may 
satisfy a request for more space.  
Indexed allocation does suffer from wasted space. The pointer 
overhead of the index block is generally greater than the pointer 
overhead of linked allocation.  

 Linked scheme. An index block is normally one disk 
block. Thus, it can be read and written directly by itself. 

 
 Multilevel index. A variant of the linked representation is 

to use a first-level index block to point to a set of second-
level index blocks, which in turn point to the file blocks. 
To access a block, the operating system uses the first-
level index to find a second-level index block, and that 
block to find the desired data block.  

 
 

12.6 FREE-SPACE MANAGEMENT  
 
 

Since there is only a limited amount of disk space, it is necessary 
to reuse the space from deleted files for new files, if possible. 

 
Bit Vector  

Free-space list is implemented as a bit map or bit vector. Each 
block is represented by 1 bit. If the block is free, the bit is 1; if 
the block is allocated, the bit is 0. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 116 
 

 
 

For example consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 
12, 13, 17, 18, 25, 26, and 27 are free, and the rest of the blocks 
are allocated. The free-space bit map would be  

001111001111110001100000011100000 ….. 
 

The main advantage of this approach is that it is relatively simple 
and efficient to find the first free block or n consecutive free 
blocks on the disk.  

The calculation of the block number is  
(number of bits per word) x (number of 0-value words) + offset of 

first 1 bit 
 

Linked List  
Another approach is to link together all the free disk blocks, 
keeping a pointy to the first free block in a special location on the 
disk and caching it in memory. This first block contains a pointer 
to the next free disk block, and so on. Block 2 would contain a 
pointer to block 3, which would point to block 4, which would 
point to block 5, which would point to block 8, and so on. 
Usually, the operating system simply needs a free block so that it 
can allocate that block to a file, so the first block in the free list is 
used. 

 
Grouping  

A modification of the free-list approach is to store the addresses 
of n free blocks in the first free block. The first n-1 of these 
blocks are actually free. The importance of this implementation 
is that the addresses of a large number of free blocks can be 
found quickly, unlike in the standard linked-list approach. 

 
Counting  

Several contiguous blocks may be allocated or freed 
simultaneously, particularly when space is allocated with the 
contiguous allocation algorithm or through clustering. A list of n 
free disk addresses, we can keep the address of the first free 
block and the number n of free contiguous blocks that follow the 
first block. 

 
Each entry in the free-space list then consists of a disk address 
and a count. Although each entry requires more space than would 
a simple disk address, the overall list will be shorter, as long as 
count is generally greater than 1. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 117 
 

  
 

12.7 SUMMARY   
 

A file is an abstract data type defined and implemented by the 
operating system. It is a sequence of logical records. A logical record 
may be a byte, a line, or a more complex data item. The operating 
system may specifically support various record types or may leave that 
support to the application program. 

 
The major task for the operating system is to map the logical file 

concept onto physical storage devices such as magnetic tape or disk. All 
the file information kept in the directory structure. File system is 
implemented on the disk and memory. 

 
Disk address define a linear addressing on the disk. Continuous 

allocation algorithm suffers from the external fragmentation. Free space 
management techniques are bit vector, linked list. Grouping, counting. 

 
Since file are the main information storage mechanism in most 

computer systems, file protection is needed. Access to files can be 
controlled separately for each type of access – read, write, execute, 
append, delete, list directory, and so on. File protection can be provided 
by access lists, passwords, or other techniques.  

 
12.8 MODEL QUESTION  

 
 

Q.1 Explain the file concept?  
Q.2 List the different types of files?  
Q.3 Describe the different types of access methods?  
Q.4 What are the advantages and disadvantages of continuous, linked 

and 
indexed allocation methods?  

Q.5 Explain the file system structure?  
Q.6 What are different types of partitions and mounting? 

 
 
 
 
 

����� 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 118 
 

 
 

13 
 
 

PROTECTION 
 

Unit Structure 
 

13.0 Objectives  
13.1 Goals of Protection  
13.2 Principles of Protection  
13.3 Domain of Protection  
13.4 Access Matrix  
13.5 Revocation of Access Rights  
13.6 Summary  
13.7 Model Question   

 
13.0 OBJECTIVE  

 
Discuss the goals and principles of protection in a modern 
computer system.  
Explain how protection domains combined with an access 
matrix are used to specify the resources a process may access.  

Examine capability and language-based protection systems   
 

13.1 GOALS OF PROTECTION   
 

Protection can improve reliability by detecting latent errors at the 
interfaces between component subsystems. Early detection of interface 
errors can often prevent contamination of a healthy subsystem by a 
malfunctioning subsystem. Also, an unprotected resource cannot defend 
against use by an unauthorized or incompetent user. A protection 
oriented system provides means to distinguish between authorized and 
unauthorized usage. 

 
The role of protection in a computer system is to provide a 

mechanism for the enforcement of the policies governing resource use. 
These policies can be established in a variety of ways. Some are fixed in 
the design of the system, while others are formulated by the 
management of a system. Still others are defined by the individual users 
to protect their own files and programs. A 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 119 
 

 
 

protection system must have the flexibility to enforce a variety of 
policies. The application programmer needs to use protection 
mechanism.  

 
13.2 PRINCIPLES OF PROTECTION   

 
Frequently, a guiding principle can be used throughout a project, 
such as the design of an operating system. Following this 
principle simplifies design decisions and keeps the system 
consistent and easy to understand. A key, time tested guiding 
principle for protection is the principle of least privilege. It 
dictates that programs, users, and even systems be given just 
enough privileges to perform their tasks. 

 
An operating system following the principle of least privilege 
implements its features, programs, system calls, and data 
structures so that failure or compromise of a component does the 
minimum damage and allows the minimum damage to be done.  
The principle of least privilege can help produce a more secure 
computing environment.  

 
13.3 DOMAIN OF PROTECTION  

 
 

A computer system is a collection of processes and objects. By 
objects, we mean both hardware objects (such as the CPU, 
memory segments, printers, disks, tape drives), and software 
objects (such as files, programs, and semaphore).  
Protection domain is process that operates within a protection 
domain, which specifies the resources that the process may 
access. Each domain defines a set of objects and .the types of 
operations that may be invoked on each object. 

 
The ability to execute an operation on an object is an access 
right. A domain is a collection of access ' rights, each of which is 
an ordered pair <object-name, rights-set>. For example, if 
domain D has the access right <file F, {read, write}>, then a 
process executing in domain D can both read and write file F, if 
cannot, however, perform any other operation on that object. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 120 
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig System with three protection domains. 
 
 

Domains do not need to be disjoint; they may share access rights. 
The association between a process and a domain may be either 
static or dynamic. A domain can be realized in a variety of ways:  

 Each user may be a domain. The set of objects that can be 
accessed depends on the identity of the user. Domain switching 
occur when the user is changed — generally when one user logs 
out and another user logs in.  

 Each process may be a domain. In this case, the set of objects 
that can be accessed depends on the identity of the process. 
Domain switching corresponds to one process sending a message 
to another process, and then waiting for a response.  

 Each procedure may be a domain. In this case, the set of objects 
that can be accessed corresponds to the local variables define 
Domain switching occurs when a procedure call is made.  

 
13.4 ACCESS MATRIX  

 
 

Our model of protection can be viewed abstractly as a matrix, 
called an access matrix. The rows of the access matrix represent 
domains, and the columns represent objects. Each entry in the 
matrix consists of a set of access rights. 

 
Because objects are defined explicitly by the column, we can 
omit the object name from the access right. The entry access (i, j) 
defines the set of operations that a process, executing in domain 
Di, can invoke on object Oj.  

We consider the access matrix shown in Figure. There are four 
domains and four objects: three files (F1, F2, F3), and one laser 
printer. When a process executes in domain D1, it can read files 

F1 and F3.. A process executing in domain D4 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 121 
 

 
 

has the same privileges as it does in domain D1, but in addition, 
it can also write onto files F1 and F3. Note that the laser printer 
can be accessed only by a process executing in domain D2.  
The access-matrix scheme provides us with the mechanism for 
specifying a variety of policies. More specifically, we must 
ensure that a process executing in domain Di can access only 
those objects specified in row i, and then only as allowed by the 
access matrix entries. 

 

Object F1 F2 F3 printer 
Domain     

D1 Read  Read  

D2    Print 

D3  read Execute  

D4 Read write  Read write   
 

Fig Access Matrix  
Policy decisions concerning protection can be implemented by 
the access matrix. The users normally decide the contents of the 
access-matrix entries.  
Allowing controlled change to the contents of the access-matrix 
entries requires three additional operations: copy, owner, and 
control.  

 
13.5 REVOCATION OF ACCESS RIGHTS   

 
In a dynamic protection system, we may sometimes need to 

revolve access rights to objects shared by different users. Various 
questions about revocation may arise:  

Immediate versus delayed. Does revocation occur immediately, 
or is it delayed? If revocation is delayed, can we find out when it 
will take place?  
Selective versus general. When an access right to an object 
revoked, does it affect all the users who have an access right to 
that object, or can we specify a select group of users whose 
access rights should be revoked?  
Partial versus total. Can a subset of the rights associated with 
an object be revoked, or must we revoke all access rights for this 
object? 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 122 
 

 
 

Temporary versus permanent. Can access be revoked 
permanently (that is, the revoked access right will never again be 
available), or can access be revoked and later be obtained again? 

 
Schemes that implements revocation for capabilities include the 
following:  

Reacquisition. Periodically, capabilities are deleted from each 
domain. If a process wants to use a capability, it may find that 
capability has been deleted. The process may then try to 
reacquire the capability. If access has been revoked, the process 
will not be able to reacquire the capability.  
Back pointers. A list of pointers is maintained with each object, 
pointing to all capabilities associated with that object. When 
revocation is required, we can follow this pointers, changing the 
capabilities as necessary. This scheme was adopted in the 
MULTICS system.  
Indirection. The capabilities point indirectly, not directly, to the 
objects. Each capability points to a unique entry in a global trade, 
which in turn points to the object. We implement revocation by 
searching the global table for the desired entry and deleting it. It 
does not allow selective revocation. 

 
Keys. A key is a unique bit pattern that can be associated with a 
capability. This key is defined when the capability is created, and 
it can be neither modifier\ed nor inspected by the process that 
owns the capability. A master key is associated with each object; 
it can be defined or replaced with the set-key operation.  

 
13.6 SUMMARY  

 
 

Computer system contains many objects, and they need to be 
protected from misuse. Objects may be hardware (such as memory, CPU 
time, and I/O devices) or software(such as files, programs, and 
semaphores). An access right is permission to perform an operation on 
an object. A domain is a set of access rights. Processes execute in 
domains and may use any of the access rights in the domain to access 
and manipulate objects. During its lifetime, a process may be either 
bound to a protection domain or allowed to switch from one domain to 
another. 

 
The access matrix is a general model of protection that provides 

a mechanism for protection without imposing a particular 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 123 
 

 
 

protection policy on the system or its users. The separation of policy and 
mechanism is an important design policy. 

 
Real systems are much more limited than the general model and 

tend to provide protection for files.  
 

13.7 MODEL QUESTION   
 

Q. 1 Define and explain Access matrix?  
Q. 2 How does the systems that implement the principle of least 

privilege still  
have protection systems?  

Q.3 Discuss strengths and weaknesses of implementing an access 
matrix using  
access list?  

Q. 4 Explain Domain Structure? 
 
 
 
 
 

����� 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 124 
 

 
 

14 
 
 

SECURITY 
 

Unit Structure 
 

14.0 Objectives  
14.1 The security problem  
14.2 Authentication  
14.3 One Time passwords  
14.4 Program Threats  
14.5 System Threats  
14.6 Threat Monitoring  
14.7 Encryption  
14.8 Computer Security Classifications  
14.9 Summary  
14.10 Model Question   

 
14.0 OBJECTIVE  

 
To discuss security threats and attacks.  

To explain the fundamentals of encryption, authentication, 
and hashing.  

To examine the uses of cryptography in computing.  
To describe the various countermeasures to security attacks.  

 
14.1 THE SECURITY PROBLEM   

 
The operating system can allow users to protect their resources. 

We say that a system is secure if its resources art used and accessed as 
intended under all circumstances. Unfortunately, it is not generally 
possible to achieve total security. Security violations of the system can 
be categorized as being either intentional (malicious) or accidental. 
Among the forms of malicious access are the following: 

 
 Unauthorized reading of data (theft of information).  
 Unauthorized modification of data.  
 Unauthorized destruction of data. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 125 
 

 
 

To protect the system, we must take security measures at two levels: 
 

 Physical: The site or sites containing the computer systems must be 
physically secured against armed or surreptitious entry by intruders. 

 
 Human: Users must be screened carefully so that the chance of 
authorizing a user who then gives access to an intruder (in exchange for 
a bribe, for example) is reduced. 

 
Security at both levels must be maintained if operating-system 

security is to be ensured.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 14.1 Standard Security Attack.  
 

14.2 AUTHENTICATION  
 

A major security problem for operating systems is the 
authentication problem. The protection system depends on an ability to 
identify the programs and processes that are executing. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 126 
 

 
 

Authentication is based on one or more of three items: user possession 
(a key or card), user knowledge (a user identifier and password), and a 
user attribute (fingerprint) retina pattern, or signature). 

 
 Constraining set of potential senders of a message  

 Complementary and sometimes redundant to encryption.  
 Also can prove message unmodified. 

 
 

 An authentication algorithm consists of following components:  
 A set K of keys.  
 A set M of messages.  
 A set A of authenticators.  
 A function S : K → (M→ A) 

 
 That is, for each k K, S(k) is a function for generating 

authenticators from messages.  
 Both S and S(k) for any k should be efficiently 

computable functions.  
 A function V : K → (M× A→ {true, false}). That is, for each k 

K, V(k) is a function for verifying authenticators on messages.  
 Both V and V(k) for any k should be efficiently 

computable functions.  
 For a message m, a computer can generate an authenticator a A 

such that V(k)(m, a) = true only if it possesses S(k).  
 Thus, computer holding S(k) can generate authenticators on 

messages so that any other computer possessing V(k) can verify 
them.  

 Computer not holding S(k) cannot generate authenticators on 
messages that can be verified using V(k).  

 Since authenticators are generally exposed (for example, they are 
sent on the network with the messages themselves), it must not be 
feasible to derive S(k) from the authenticators. 

 
Authentication – Hash Functions  

 Basis of authentication.  
 Creates small, fixed-size block of data (message digest, 

hash value) from m.  
 Hash Function H must be collision resistant on m 

Must be infeasible to find an m’ ≠ m such that H(m) = 
H(m’). 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 127 
 

 
 

 If H(m) = H(m’), then m = m’  
The message has not been modified.  

 Common message-digest functions include MD5, which 
produces a 128-bit hash, and SHA-1, which outputs a 160-bit 
hash. 

 
Authentication – MAC  
 Symmetric encryption used in message-authentication code 

(MAC) authentication algorithm.  
 Simple example:  

 MAC defines S(k)(m) = f (k, H(m)).  
 Where f is a function that is one-way on its first argument. k 

cannot be derived from f (k, H(m)). 

 Because of the collision resistance in the hash function, 
reasonably assured no other message could create the same 
MAC.  

 A suitable verification algorithm is V(k)(m, a) ≡ ( f (k,m) = 
a).  

 Note that k is needed to compute both S(k) and V(k), so 
anyone able to compute one can compute the other. 

 
Authentication – Digital Signature  
 Based on asymmetric keys and digital signature algorithm.  
 Authenticators produced are digital signatures.  
 In a digital-signature algorithm, computationally infeasible to 

derive S(ks ) from V(kv)  
 V is a one-way function.  
 Thus, kv is the public key and ks is the private key.  

 Consider the RSA digital-signature algorithm.  
 Similar to the RSA encryption algorithm, but the key use is 

reversed 
 Digital signature of message S(ks )(m) = H(m)ks mod N  
 The key ks again is a pair d, N, where N is the product of two 

large, randomly chosen prime numbers p and q.  
 Verification algorithm is V(kv)(m, a) ≡ (akv mod N = H(m)) 

� Where kv satisfies kvks mod (p − 1)(q − 1) = 1 
 Why authentication if a subset of encryption?  

 Fewer computations (except for RSA digital signatures). 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 128 
 

 
 

 Authenticator usually shorter than message.  
 It Can be basis for non-repudiation.   

 
14.3 ONE TIME PASSWORDS   

 
To avoid the problems of password sniffing and shoulder surfing, 
a system could use a set of paired passwords. When a session 
begins, the system randomly selects and presents one part of a 
password pair; the user must supply the other part. In this system, 
the user is challenged and must respond with the correct answer 
to that challenge.  
This approach can be generalized to the use of an algorithm as a 
password. The algorithm might be an integer function.  
In this one-time password system, the password is different in 
each instance. Anyone capturing the password from one session 
and trying to reuse it in another session will fail.  
The user uses the keypad to enter the shared secret, also known 
as a personal identification number (PIN). Another variation on 
one-time passwords is the use of a code book, or one time pad.  

 
14.4 PROGRAM THREATS   

 
In an environment where a program written by one user may be 

used by another user, there is an opportunity for misuse, which may 
result in unexpected behavior. There are two common methods. Trojan 
horses and Trap doors. 

 
14.4.1 Trojan Horse  

Many systems have mechanisms for allowing programs written 
by users to be executed by other users. If these programs are 
executed in a domain that provides the access rights of the 
executing user, they may misuse these rights.  
A code segment that its environment is called a Trojan horse. 
The Trojan-horse problem is exacerbated by long search paths. 
The search path lists the set of directories to search when an 
ambiguous program name is given. The path is searched for a file 
of that name and the file is executed. All the directories in the 
search path must be secure, or a Trojan horse could be slipped 
into the user's path and executed accidentally.  

A variation of the Trojan horse  would be a program that 
emulates a login program. The emulator stored away the 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 129 
 

 
 

password, printed out a login error message, and exited; the user 
was then provided with a genuine login prompt.  
This type of attack can be defeated by the operating system 
printing a usage message at the end of an interactive session or 
by a non-trappable key sequence, such as the control-alt-delete 
combination that Windows NT uses. 

 
14.4.2 Trap Door  

The designer of a program or system might leave a hole in the 
software that only Operating System is capable of using. A clever trap 
door could be included in a compiler. The compiler could generate 
standard object code as well as a trap door, regardless of the source code 
being compiled.  

 
14.5 SYSTEM THREATS   

 
Most operating systems provide a means for processes to spawn 

other processes. 
 

14.5.1 Worms  
A worm is a process that uses the spawn mechanism to clobber 
system performance. The worm spawns copies of itself, using up 
system resources and perhaps locking out system use by, all 
other processes. Since they may reproduce themselves among 
systems and thus shut down the entire network.  
The worm was made up of two programs a grappling hook (also 
called bootstrap or vector) program and the main program. The 
grappling hook consisted of 99 lines of C code compiled and run 
on each machine it accessed. The grappling hook connected to 
the machine where it originated and uploaded a copy of the main 
worm onto the "hooked" system. The main program proceeded to 
search for other machines to which the newly infected system 
could connect easily.  
The attack via remote access was one of three infection methods 
built into the worm. 

 
14.5.2 Viruses  

Another  form  of  computer  attack  is  a  virus.  Like  worms, 
viruses are designed to spread into other programs and can wreak 

havoc in a system, including modifying or destroying files and 
causing system crashes and program malfunctions. Whereas a 

worm is structured as a complete, standalone program,  a  virus  
is  a  fragment  of  code  embedded  in  a 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 130 
 

 
 

legitimate program. Viruses are a major problem for computer 
users, especially users of microcomputer systems.  
Even if a virus does infect a program, its powers are limited 
because other aspects of the system are protected in multi-user. 
Single-user systems have no such protections and, as a result, a 
virus has free run.  
Viruses are usually spread by users downloading viral programs 
from public bulletin boards or exchanging floppy disks 
containing an infection. The best protection against computer 
viruses is prevention, or the practice of Safe computing.  

 
14.6 THREAT MONITORING   

 
The security of a system can be improved by two management 
techniques. One is threat monitoring: The system can check for 
suspicious patterns of activity in an attempt to detect a security 
violation.  
Another technique is an audit log. An audit log simply records 
the time, user, and type of all accesses to an object. Networked 
computers are much more susceptible to security attacks than are 
standalone systems.  
One solution is the use of a firewall to separate trusted and un-
trusted systems. A firewall is a computer or router that sits 
between the trusted and the un-trusted. It limits network access 
between the two security domains, and monitors and logs all 
connections. A firewall therefore may need to allow http to pass.  

 
14.7 ENCRYPTION   

 
Encryption is one common method of protecting information 
transmitted over unreliable links. The basic mechanism works as 
follows.  

 The information (text) is encrypted (encoded) from its 
initial readable form (called clear text), to an internal 
form (called cipher text). This internal text form, although 
readable, does not make any sense.  

 The cipher text can be stored in a readable file, or 
transmitted over unprotected channels. 

 To make sense of the cipher text, the receiver must 
decrypt (decode) it back into clear text. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 131 
 

 
 

Even if the encrypted information is accessed by an unauthorized 
person or program, it will be useless unless it can be decoded.  
 Encryption algorithm consists of  

 Set of K keys.  
 Set of M Messages.  
 Set of C ciphertexts (encrypted messages). 

 
 A function E : K → (M→C). That is, for each k K, E(k) is a 

function for generating ciphertexts from messages.  
 Both E and E(k) for any k should be efficiently computable 

functions.  
 A function D : K → (C → M). That is, for each k K, D(k) is a 

function for generating messages from ciphertexts.  
 Both D and D(k) for any k should be efficiently computable 

functions.  
 An encryption algorithm must provide this essential property: Given 

a ciphertext c C, a computer can compute m such that E(k)(m) = c 
only if it possesses D(k).  
 Thus, a computer holding D(k) can decrypt ciphertexts to the 

plaintexts used to produce them, but a computer not holding D(k) 
cannot decrypt ciphertexts.  

 Since ciphertexts are generally exposed (for example, sent on the 
network), it is important that it be infeasible to derive D(k) from the 
ciphertexts.  

 
14.8 COMPUTER SECURITY CLASSIFICATIONS  

 
The U.S. Department of Defense outlines four divisions of 
computer security: A, B, C, and D. 

 
D – Minimal security.  

C – Provides discretionary protection through auditing. Divided 
into C1 and C2. C1 identifies cooperating users with the same 
level of protection. C2 allows user-level access control. 

 
B – All the properties of C, however each object may have 
unique sensitivity labels. Divided into B1, B2, and B3. 

 
A – Uses formal design and verification techniques to ensure 
security. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 132 
 

  
 

14.9 SUMMARY   
 

Protection is an internal problem. Security, in contrast, must 
consider both the computer system and the environment people, 
buildings, businesses, valuable objects, and threats within which the 
system is used. 

 
The data stored in the computer system must be protected from 

unauthorized access, malicious destruction or alteration, and accidental 
introduction of inconsistency. It is easier to protect against accidental 
loss of data consistency than to protect against malicious access to the 
data. 

 
Several types of attacks can be launched against programs and 

against individual computes or the masses. Encryption limits the domain 
of receivers of data, while authentication limits the domain of senders. 
User authentication methods are used to identify legitimate users of a 
system.  

 
14.10 MODEL QUESTION  

 
 

Q. 1 Define and explain Encryption?  
Q. 2 Explain authentication process?  
Q. 3 Explain various types of system threats?  
Q.4 Write a note on following  

 Viruses  
 Computer Security Specification 

Q. 5 Explain types of Program threats? 
 
 
 
 
 
 
 

����� 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 133 
 

 
 

15 
 
 

LINUX SYSTEM 
 

Unit Structure 
 

15.0 Objectives  
15.1 Linux introduction and File System  
15.2 Basic Features  
15.3 Advantages  
15.4 Basic Architecture of UNIX/Linux System  
15.5 Summary  
15.6 Model Question   

 
15.0 OBJECTIVE   

 
To explore the history of the UNIX operating system from 
which Linux is derived and the principles which Linux is 
designed upon.  
To examine the Linux process model and illustrate how 
Linux schedules processes and provides inter-process 
communication.  
To explore how Linux implements file systems and manages I/O 
devices.  

 
15.1 LINUX INTRODUCTION AND FILE SYSTEM   

 
Linux looks like UNIX system. Linux is developed by Linux 

Torvalds. Linux development began in 1991. Linux source code is 
available for free on the internet. The basic Linux system is standard 
environment for applications and user programming. 

 
15.1.1 Components of a Linux System  
Any Linux system consists of three components.  

 Kernel  
 System libraries  
 System utilities 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 134 
 

 
 

Kernel:  
The Kernel is responsible for maintaining all the important 

abstraction of the operating system. It includes virtual memory and 
processes. Kernel is most important component of the Linux system. 

 
 
 

System libraries:  
It contains standard set of functions through which application 

can interact with the Kernel. System library implements much of the 
operating system functionality that does not need the full privileges of 
Kernel code. 

 
System utilities:  

System utilities are programs that perform individual, specialized 
management tasks. 

 
Fig.15.1 shows the components of the Linux system.  

All the Kernel code executes in the processors privileged mode 
with full access to all the physical resources of the computer. 
Linux refers to this privileged mode as Kernel mode. In Linux, 
no user mode code is built into the Kernel.  

 
 System User User utility Compilers  
 Management Processes programs   
 programs       

System shared libraries   
Linux Kernel   

Loadable Kernel modules  
 

Fig. 15.1 Components of Linux system 
 

Any operating system support code that does not need to urn in 
Kernel mode is placed into the system libraries instead. 

 
The Kernel is created as a single, monolithic binary. All Kernel 
code and data structures are kept in a single address space, no 
context switches are necessary when a process calls an operating 
system function. Core scheduling, virtual memory code also 
occupied same address space.  
Linux Kernel provides all the functionality necessary to run 
processes, and it provides system services to give arbitrated and 
protected access to hardware resources 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 135 
 

 
 

The Linux system includes a wide variety of user mode programs 
both system utilities and user utilities.  

 
15.2 KERNEL MODULES   

 
Kernel code executes in Kernel mode with full access to all the 
physical resources of the computer. Sections of Kernel code that 
can be compiled, loaded and unloaded independent of the rest of 
the Kernel.  
A Kernel module may typically implement a device driver, a file 
system, or a networking protocol. The module interface allows 
third parties to write and distribute, on their own teams, device 
drivers or file systems that could not be distributed under the 
GPL.  
The loadable Kernel modules run in privileged Kernel mode. 
Kernel modules allow a Linux system to be setup with a 
standard, minimal Kernel, without any extra device drivers built 
in. Kernel management allows modules to be dynamically loaded 
into memory when needed.  

Linux Kernel modules has three component.  
 Module management  
 Driver registration  
 Conflict resolution mechanism 

 
 Module management  

 It support loading modules into memory and letting them 
talk to the rest of the Kernel. 

 Linux maintains an internal symbol table in the Kernel.  
 Module loading is split into two separate sections:  
a. Managing sections of module code in Kernel memory  
b. Handling symbols that modules are allowed to reference. 
 Symbol table does not contain the full set of symbol 

defined in the Kernel during latter compilation 
 The module requestor manages loading requested, but 

currently unloaded modules. 
 It also regularly queries the Kernel to see whether a 

dynamically loaded module is still in use and will unload 
it when it is no longer actively needed  

 Original service request will complete once the module is 
loaded. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 136 
 

 
 

 Driver Registration.  
 Allows modules to tell the rest of the kernel that a new 

driver has become available. 
 Kernel maintains dynamic tables of all known drivers.  
 Kernel also provides a set of routines to allow drivers to 

be added or removed. 
 Registration table contains following:  

 Device drivers  
 File systems  
 Network protocols  
 Binary format.  

 Device drivers may be block or character devices.  
 Files system contains network file system, virtual file 

system etc. 
 Network protocol includes IPX, packet filtering rules for 

a network. 
 

 Conflict Resolution  
 A mechanisms that allows different device drivers to 

reserve hardware resources and to protect those resources 
from accidental use by another driver.  

 Linux provides a ventral conflict resolution mechanism. 
 

 Conflict resolution module aims are  
 To prevent modules from clashing over access to 

hardware resources. 
 Prevent auto probes from interfering with 

existing device drivers. 
 Resolve conflicts among multiple drivers trying 

to access the same hardware. 
 Kernel maintains lists of allocated hardware resources.  

 
15.3 BASIC FEATURES  

 
UNIX has a number of features, mostly good and some bad, but 

it is necessary to know at least some of them: 
 

 UNIX is Portable: Portability is the ability of the software that 
operates on one machine to operate on another, different machine. In 
UNIX there are two types of portability, that of the UNIX operating 
system itself (i.e. the Kernel program) and of the application program. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 137 
 

 
 

Advantages of portability are:  
 Portable application program decrease the programming costs.  
 Retraining is avoided as the end user works on a similar system with 
enhanced capabilities. 

 
 Open system: The system that more than one system can access the 
same data at the same time. Several people involved in a common 
project can conveniently access each other’s data. Apart from data, other 
resources like memory (RAM), the CPU(the chip), or the hard disk can 
be used by many users simultaneously. 

 
 Multi-user Capability: This means that more than one system can 
access the same data at the same time. Several people involved in a 
common project can conveniently access each other’s data. Apart from 
data, other resources like memory(RAM), the CPU(the chip), or the hard 
disk can be used by many users simultaneously. 

 
 Multi-tasking Capability: Multi-tasking means that a user can 
perform more than one tasks at the same time. A user can do this by 
placing some tasks in the background while he works on a task in the 
foreground. An ampersand(&) placed at the end of the command line 
sends the process in background. 

 
 Hierarchical File System: Hierarchical structure offers maximum 
flexibility for grouping information in a way that reflects in natural 
structure. The programs and data can be organized conveniently since 
files can be grouped according to usage. 

 
 The shell: User interaction with UNIX is controlled by the shell, a 
powerful command interpreter. The shell has various capabilities like 
redirecting the application input and output and also to progress a group 
of files with a single command. 

 
 UNIX has built in networking: The UNIX has various built in 
programs and utilities like UUCP, mail, write, etc. With these utilities 
one can communicate with other user or one server to another. 

 
 Security: Computer system security means protecting hardware and 
the information contained within the system. Security means to avoid:  
a) Unauthorized access to the computer system. b) 
Unauthorized examination of output. 
c) Unauthorized tapping of data.  
d) Destruction of software data by mistake or on purpose.  
 Examination of sensitive data by unauthorized users and alteration 

of sensitive data without detection. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 138 
 

 
 

The UNIX provides the features like:  
 Password protection for system access.  
 Control access to individual files.  
 Encryption of data files. 

 
 Software Development Tools: UNIX offers an excellent variety of 
tools for software development for all phases, from program editing to 
maintenance of software.  

 
15.4 BASIC ARCHITECTURE OF UNIX/LINUX SYSTEM   

 
 

 USER  

 Compilers  
 CC  

 Shell  

Application 
Kernel a.out Programs 

USER 
HARDWARE 

USE
R  

  date 
 
 
 
 
 

Id 

 
 
 
 
wc 

 
vi 

grep  
ed 

 
 
 
 

USER 
 
 
 
 
 
 

Fig Architecture of UNIX System 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 139 
 

 
 

The figure shows the architecture of the UNIX system in the 
form of various layers. The inner most layer i.e. core is the hardware of 
the computer system. The kernel is a software which directly comes in 
contact with the hardware and controls the hardware. A layer above this 
is the shell. Above this the various utilities like nroff, troff, vi, as, etc. 
and the various compilers and other application program reside. Let us 
see these layers and their functions in detail: 

 
 
 

 Hardware: The hardware at the centre of the structure provides the 
operating system with basic services. The hardware constitutes all the 
peripherals like memory (RAM, HDD, FDD, CD etc), processor, mouse 
and other input devices, terminal (i.e. VDUs), printers etc. 

 
 The Kernel: The operating system interacts directly with the 
hardware, providing common services to programs and insulating user 
program complexities of hardware. The operating system is also called 
as Kernel. This kernel interacts directly with the hardware. Because of 
this hardware isolation of user program, it is easy to move the user 
programs easily between UNIX systems running on different hardware. 

 
 Shell: Shell is actually the interface between the user and the Kernel 
that isolates the user from knowledge of Kernel functions. The shell 
accepts the commands keyed in by the users and checks for their syntax 
and gives out error messages if something goes. These command after 
getting interpreted by the shell are provided to kernel for appropriate 
action. It also provides the features of pipe ( | ) and redirection ( i.e. <, >, 
>>, <<). The shell also has a programming capability of its own. There 
are a number of shells available in various UNIX flavours but common 
are- 

 
 

 Bourne Shell (sh)  
 C Shell ( csh )  
 Korn Shell (ksh)  

The other shells are: bash, restricted Shell(rsh) and visual 
Shell(vsh). The bourne Shell (sh) is also called a standard shell. 

 
 UNIX utilities: The UNIX system Kernel does only level jobs 
necessary to schedule processes, keep track of files, and control 
hardware devices. 

 
All other operating system functions are done by utility programs 

written as software tools. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 140 
 

 
 

Following are some of the utilities that play a prominent role in the 
operating of the UNIX system. 

 
 Init initializes the process creation mechanism. 

 
For each terminal where a login is allowed, init creates a process 
that prints the login: message. 

 
 Getty process “conditions” the connection to the terminal so that 

the terminal can communicate with the computer and then prints 
the login: message. 

 
 Login when an user responds to the login prompt the login 

program replaces getty. If the user account has a password, login 
prints the password : message and checks to see that the 
password entered is correct. 

 
If correct, program named in password file, usually Bourne 

shell or C shell replaces login and the user is successfully logged 
into the system. 

 
 stty changes a terminal characteristics. 

 
 mkfs builds a file system. 

 
 mknod builds a special file system. 

 
 mount unmount mounts and unmounts a file system. 

 
 syne writes a disk block images from memory to disk.  

 
 

15.5 SUMMARY   
 

Linux is a modern, free operating system based on UNIX 
standards. It has designed to run efficiently and reliably on common PC 
hardware; it also runs on a variety of other platforms. It provide a 
programming interface and user interface compatible with standard 
UNIX systems and can run a large number of UNIX applications, 
including an increasing number of commercially supported applications. 

 
Linux has not evolved in a vacuum a completely Linux system 

includes many components that were developed independently of Linux. 
The core Linux operating system kernel is entirely original, but allows 
much existing free UNIX software to run, resulting in a entire UNIX 
compatible operating system free from proprietary code. 



SR Engineering College Warangal Telangana 
 

P. Praveen Asst Prof, Department of Computer Science and Engineering Page 141 
 

 
 

The Linux kernel is implemented as a traditional monolithic 
kernel for performance reasons, but it is modular enough in design to 
allow most drivers to be dynamically loaded and unloaded at run time.  

 
15.6 MODEL QUESTION  

 
Q.1  List different components of a linux system?  
Q.2 What are Kernel modules?  
Q.3  Explain Basic architecture of UNIX/Linux system?  
Q.4  Explain basic features of UNIX/Linux?  
Q.5  Define and explain Shell? 

 
�  
�  

����� 


